Refactor face library page (#17424)

* Section faces by event id

* Make score keeping more robust

* layout improvements

* Cleanup dialog

* Fix clicking behavior

* Add view in explore option

* math.round

* Don't require events

* Cleanup

* Remove selection

* Don't require

* Change dialog size with snapshot

* Use filename as key

* fix key

* Rework layout for mobile

* Handle mobile landscape

* Fix train issue

* Match logic

* Move deletion logic

* Fix reprocessing

* Support creating a new face

* Translations

* Do sorting in frontend

* Adjust unknown

* Cleanup

* Set max limit to faces to recognize

* Fix sorting

* Fix
This commit is contained in:
Nicolas Mowen 2025-03-28 12:52:12 -06:00 committed by GitHub
parent 37e0b9b904
commit b14abffea3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 325 additions and 148 deletions

View File

@ -59,7 +59,7 @@ Fine-tune face recognition with these optional parameters:
### Recognition ### Recognition
- `model_size`: Which model size to use, options are `small` or `large` - `model_size`: Which model size to use, options are `small` or `large`
- `unknown_score`: Min score to mark a person as a potential match, matches below this will be marked as unknown. - `unknown_score`: Min score to mark a person as a potential match, matches at or below this will be marked as unknown.
- Default: `0.8`. - Default: `0.8`.
- `recognition_threshold`: Recognition confidence score required to add the face to the object as a sub label. - `recognition_threshold`: Recognition confidence score required to add the face to the object as a sub label.
- Default: `0.9`. - Default: `0.9`.

View File

@ -41,13 +41,9 @@ def get_faces():
face_dict[name] = [] face_dict[name] = []
for file in sorted( for file in filter(
filter( lambda f: (f.lower().endswith((".webp", ".png", ".jpg", ".jpeg"))),
lambda f: (f.lower().endswith((".webp", ".png", ".jpg", ".jpeg"))), os.listdir(face_dir),
os.listdir(face_dir),
),
key=lambda f: os.path.getctime(os.path.join(face_dir, f)),
reverse=True,
): ):
face_dict[name].append(file) face_dict[name].append(file)
@ -125,10 +121,13 @@ def train_face(request: Request, name: str, body: dict = None):
sanitized_name = sanitize_filename(name) sanitized_name = sanitize_filename(name)
rand_id = "".join(random.choices(string.ascii_lowercase + string.digits, k=6)) rand_id = "".join(random.choices(string.ascii_lowercase + string.digits, k=6))
new_name = f"{sanitized_name}-{rand_id}.webp" new_name = f"{sanitized_name}-{rand_id}.webp"
new_file = os.path.join(FACE_DIR, f"{sanitized_name}/{new_name}") new_file_folder = os.path.join(FACE_DIR, f"{sanitized_name}")
if not os.path.exists(new_file_folder):
os.mkdir(new_file_folder)
if training_file_name: if training_file_name:
shutil.move(training_file, new_file) shutil.move(training_file, os.path.join(new_file_folder, new_name))
else: else:
try: try:
event: Event = Event.get(Event.id == event_id) event: Event = Event.get(Event.id == event_id)
@ -155,7 +154,7 @@ def train_face(request: Request, name: str, body: dict = None):
x2 = x1 + int(face_box[2] * detect_config.width) - 4 x2 = x1 + int(face_box[2] * detect_config.width) - 4
y2 = y1 + int(face_box[3] * detect_config.height) - 4 y2 = y1 + int(face_box[3] * detect_config.height) - 4
face = snapshot[y1:y2, x1:x2] face = snapshot[y1:y2, x1:x2]
cv2.imwrite(new_file, face) cv2.imwrite(os.path.join(new_file_folder, new_name), face)
context: EmbeddingsContext = request.app.embeddings context: EmbeddingsContext = request.app.embeddings
context.clear_face_classifier() context.clear_face_classifier()

View File

@ -33,7 +33,8 @@ logger = logging.getLogger(__name__)
MAX_DETECTION_HEIGHT = 1080 MAX_DETECTION_HEIGHT = 1080
MIN_MATCHING_FACES = 2 MAX_FACES_ATTEMPTS_AFTER_REC = 6
MAX_FACE_ATTEMPTS = 12
class FaceRealTimeProcessor(RealTimeProcessorApi): class FaceRealTimeProcessor(RealTimeProcessorApi):
@ -170,6 +171,23 @@ class FaceRealTimeProcessor(RealTimeProcessorApi):
) )
return return
# check if we have hit limits
if (
id in self.person_face_history
and len(self.person_face_history[id]) >= MAX_FACES_ATTEMPTS_AFTER_REC
):
# if we are at max attempts after rec and we have a rec
if obj_data.get("sub_label"):
logger.debug(
"Not processing due to hitting max attempts after true recognition."
)
return
# if we don't have a rec and are at max attempts
if len(self.person_face_history[id]) >= MAX_FACE_ATTEMPTS:
logger.debug("Not processing due to hitting max rec attempts.")
return
face: Optional[dict[str, any]] = None face: Optional[dict[str, any]] = None
if self.requires_face_detection: if self.requires_face_detection:
@ -241,7 +259,7 @@ class FaceRealTimeProcessor(RealTimeProcessorApi):
sub_label, score = res sub_label, score = res
if score < self.face_config.unknown_score: if score <= self.face_config.unknown_score:
sub_label = "unknown" sub_label = "unknown"
logger.debug( logger.debug(
@ -255,13 +273,23 @@ class FaceRealTimeProcessor(RealTimeProcessorApi):
os.makedirs(folder, exist_ok=True) os.makedirs(folder, exist_ok=True)
cv2.imwrite(file, face_frame) cv2.imwrite(file, face_frame)
files = sorted(
filter(lambda f: (f.endswith(".webp")), os.listdir(folder)),
key=lambda f: os.path.getctime(os.path.join(folder, f)),
reverse=True,
)
# delete oldest face image if maximum is reached
if len(files) > self.config.face_recognition.save_attempts:
os.unlink(os.path.join(folder, files[-1]))
if id not in self.person_face_history: if id not in self.person_face_history:
self.person_face_history[id] = [] self.person_face_history[id] = []
self.person_face_history[id].append( self.person_face_history[id].append(
(sub_label, score, face_frame.shape[0] * face_frame.shape[1]) (sub_label, score, face_frame.shape[0] * face_frame.shape[1])
) )
(weighted_sub_label, weighted_score) = self.weighted_average_by_area( (weighted_sub_label, weighted_score) = self.weighted_average(
self.person_face_history[id] self.person_face_history[id]
) )
@ -297,6 +325,9 @@ class FaceRealTimeProcessor(RealTimeProcessorApi):
sub_label, score = res sub_label, score = res
if score <= self.face_config.unknown_score:
sub_label = "unknown"
return {"success": True, "score": score, "face_name": sub_label} return {"success": True, "score": score, "face_name": sub_label}
elif topic == EmbeddingsRequestEnum.register_face.value: elif topic == EmbeddingsRequestEnum.register_face.value:
rand_id = "".join( rand_id = "".join(
@ -366,6 +397,9 @@ class FaceRealTimeProcessor(RealTimeProcessorApi):
sub_label, score = res sub_label, score = res
if score <= self.face_config.unknown_score:
sub_label = "unknown"
if self.config.face_recognition.save_attempts: if self.config.face_recognition.save_attempts:
# write face to library # write face to library
folder = os.path.join(FACE_DIR, "train") folder = os.path.join(FACE_DIR, "train")
@ -375,38 +409,49 @@ class FaceRealTimeProcessor(RealTimeProcessorApi):
) )
shutil.move(current_file, new_file) shutil.move(current_file, new_file)
files = sorted(
filter(lambda f: (f.endswith(".webp")), os.listdir(folder)),
key=lambda f: os.path.getctime(os.path.join(folder, f)),
reverse=True,
)
# delete oldest face image if maximum is reached
if len(files) > self.config.face_recognition.save_attempts:
os.unlink(os.path.join(folder, files[-1]))
def expire_object(self, object_id: str): def expire_object(self, object_id: str):
if object_id in self.person_face_history: if object_id in self.person_face_history:
self.person_face_history.pop(object_id) self.person_face_history.pop(object_id)
def weighted_average_by_area(self, results_list: list[tuple[str, float, int]]): def weighted_average(
score_count = {} self, results_list: list[tuple[str, float, int]], max_weight: int = 4000
):
"""
Calculates a robust weighted average, capping the area weight and giving more weight to higher scores.
Args:
results_list: A list of tuples, where each tuple contains (name, score, face_area).
max_weight: The maximum weight to apply based on face area.
Returns:
A tuple containing the prominent name and its weighted average score, or (None, 0.0) if the list is empty.
"""
if not results_list:
return None, 0.0
weighted_scores = {} weighted_scores = {}
total_face_areas = {} total_weights = {}
for name, score, face_area in results_list: for name, score, face_area in results_list:
if name == "unknown":
continue
if name not in weighted_scores: if name not in weighted_scores:
score_count[name] = 1
weighted_scores[name] = 0.0 weighted_scores[name] = 0.0
total_face_areas[name] = 0.0 total_weights[name] = 0.0
else:
score_count[name] += 1
weighted_scores[name] += score * face_area # Capped weight based on face area
total_face_areas[name] += face_area weight = min(face_area, max_weight)
prominent_name = max(score_count) # Score-based weighting (higher scores get more weight)
weight *= (score - self.face_config.unknown_score) * 10
weighted_scores[name] += score * weight
total_weights[name] += weight
return prominent_name, weighted_scores[prominent_name] / total_face_areas[ if not weighted_scores:
prominent_name return None, 0.0
]
best_name = max(weighted_scores, key=weighted_scores.get)
weighted_average = weighted_scores[best_name] / total_weights[best_name]
return best_name, weighted_average

View File

@ -17,6 +17,7 @@
"createFaceLibrary": { "createFaceLibrary": {
"title": "Create Face Library", "title": "Create Face Library",
"desc": "Create a new face library", "desc": "Create a new face library",
"new": "Create New Face",
"nextSteps": "It is recommended to use the Train tab to select and train images for each person as they are detected. When building a strong foundation it is strongly recommended to only train on images that are straight-on. Ignore images from cameras that recognize faces from an angle." "nextSteps": "It is recommended to use the Train tab to select and train images for each person as they are detected. When building a strong foundation it is strongly recommended to only train on images that are straight-on. Ignore images from cameras that recognize faces from an angle."
}, },
"train": { "train": {

View File

@ -3,6 +3,7 @@ import TimeAgo from "@/components/dynamic/TimeAgo";
import AddFaceIcon from "@/components/icons/AddFaceIcon"; import AddFaceIcon from "@/components/icons/AddFaceIcon";
import ActivityIndicator from "@/components/indicators/activity-indicator"; import ActivityIndicator from "@/components/indicators/activity-indicator";
import CreateFaceWizardDialog from "@/components/overlay/detail/FaceCreateWizardDialog"; import CreateFaceWizardDialog from "@/components/overlay/detail/FaceCreateWizardDialog";
import TextEntryDialog from "@/components/overlay/dialog/TextEntryDialog";
import UploadImageDialog from "@/components/overlay/dialog/UploadImageDialog"; import UploadImageDialog from "@/components/overlay/dialog/UploadImageDialog";
import { Button } from "@/components/ui/button"; import { Button } from "@/components/ui/button";
import { import {
@ -32,13 +33,23 @@ import { useFormattedTimestamp } from "@/hooks/use-date-utils";
import useKeyboardListener from "@/hooks/use-keyboard-listener"; import useKeyboardListener from "@/hooks/use-keyboard-listener";
import useOptimisticState from "@/hooks/use-optimistic-state"; import useOptimisticState from "@/hooks/use-optimistic-state";
import { cn } from "@/lib/utils"; import { cn } from "@/lib/utils";
import { Event } from "@/types/event";
import { FaceLibraryData, RecognizedFaceData } from "@/types/face"; import { FaceLibraryData, RecognizedFaceData } from "@/types/face";
import { FaceRecognitionConfig, FrigateConfig } from "@/types/frigateConfig"; import { FaceRecognitionConfig, FrigateConfig } from "@/types/frigateConfig";
import { TooltipPortal } from "@radix-ui/react-tooltip";
import axios from "axios"; import axios from "axios";
import { useCallback, useEffect, useMemo, useRef, useState } from "react"; import { useCallback, useEffect, useMemo, useRef, useState } from "react";
import { isDesktop, isMobile } from "react-device-detect"; import { isDesktop, isMobile } from "react-device-detect";
import { useTranslation } from "react-i18next"; import { useTranslation } from "react-i18next";
import { LuImagePlus, LuRefreshCw, LuScanFace, LuTrash2 } from "react-icons/lu"; import {
LuImagePlus,
LuPlus,
LuRefreshCw,
LuScanFace,
LuSearch,
LuTrash2,
} from "react-icons/lu";
import { useNavigate } from "react-router-dom";
import { toast } from "sonner"; import { toast } from "sonner";
import useSWR from "swr"; import useSWR from "swr";
@ -391,14 +402,53 @@ function TrainingGrid({
onClickFace, onClickFace,
onRefresh, onRefresh,
}: TrainingGridProps) { }: TrainingGridProps) {
const { t } = useTranslation(["views/faceLibrary"]); const { t } = useTranslation(["views/faceLibrary", "views/explore"]);
const navigate = useNavigate();
// face data // face data
const [selectedEvent, setSelectedEvent] = useState<RecognizedFaceData>(); const faceGroups = useMemo(() => {
const groups: { [eventId: string]: RecognizedFaceData[] } = {};
Array.from(new Set(attemptImages))
.sort()
.reverse()
.forEach((image) => {
const parts = image.split("-");
const data = {
filename: image,
timestamp: Number.parseFloat(parts[0]),
eventId: `${parts[0]}-${parts[1]}`,
name: parts[2],
score: Number.parseFloat(parts[3]),
};
if (groups[data.eventId]) {
groups[data.eventId].push(data);
} else {
groups[data.eventId] = [data];
}
});
return groups;
}, [attemptImages]);
const eventIdsQuery = useMemo(
() => Object.keys(faceGroups).join(","),
[faceGroups],
);
const { data: events } = useSWR<Event[]>([
"event_ids",
{ ids: eventIdsQuery },
]);
// selection
const [selectedEvent, setSelectedEvent] = useState<Event>();
const formattedDate = useFormattedTimestamp( const formattedDate = useFormattedTimestamp(
selectedEvent?.timestamp ?? 0, selectedEvent?.start_time ?? 0,
config?.ui.time_format == "24hour" config?.ui.time_format == "24hour"
? t("time.formattedTimestampWithYear.24hour", { ns: "common" }) ? t("time.formattedTimestampWithYear.24hour", { ns: "common" })
: t("time.formattedTimestampWithYear.12hour", { ns: "common" }), : t("time.formattedTimestampWithYear.12hour", { ns: "common" }),
@ -415,23 +465,32 @@ function TrainingGrid({
} }
}} }}
> >
<DialogContent> <DialogContent
className={cn(
"",
selectedEvent?.has_snapshot && isDesktop && "max-w-7xl",
)}
>
<DialogHeader> <DialogHeader>
<DialogTitle>{t("details.face")}</DialogTitle> <DialogTitle>{t("details.face")}</DialogTitle>
<DialogDescription>{t("details.faceDesc")}</DialogDescription> <DialogDescription>{t("details.faceDesc")}</DialogDescription>
</DialogHeader> </DialogHeader>
<div className="flex flex-col gap-1.5"> <div className="flex flex-col gap-1.5">
<div className="text-sm text-primary/40">{t("details.person")}</div> <div className="text-sm text-primary/40">{t("details.person")}</div>
<div className="text-sm capitalize">{selectedEvent?.name}</div>
</div>
<div className="flex flex-col gap-1.5">
<div className="text-sm text-primary/40">
{t("details.confidence")}
</div>
<div className="text-sm capitalize"> <div className="text-sm capitalize">
{(selectedEvent?.score || 0) * 100}% {selectedEvent?.sub_label ?? "Unknown"}
</div> </div>
</div> </div>
{selectedEvent?.data.sub_label_score && (
<div className="flex flex-col gap-1.5">
<div className="text-sm text-primary/40">
{t("details.confidence")}
</div>
<div className="text-sm capitalize">
{Math.round(selectedEvent?.data?.sub_label_score || 0) * 100}%
</div>
</div>
)}
<div className="flex flex-col gap-1.5"> <div className="flex flex-col gap-1.5">
<div className="text-sm text-primary/40"> <div className="text-sm text-primary/40">
{t("details.timestamp")} {t("details.timestamp")}
@ -440,36 +499,89 @@ function TrainingGrid({
</div> </div>
<img <img
className="w-full" className="w-full"
src={`${baseUrl}api/events/${selectedEvent?.eventId}/thumbnail.jpg`} src={`${baseUrl}api/events/${selectedEvent?.id}/${selectedEvent?.has_snapshot ? "snapshot.jpg" : "thumbnail.jpg"}`}
/> />
</DialogContent> </DialogContent>
</Dialog> </Dialog>
<div className="scrollbar-container flex flex-wrap gap-2 overflow-y-scroll p-1"> <div className="scrollbar-container flex flex-wrap gap-2 overflow-y-scroll p-1">
{attemptImages.map((image: string) => ( {Object.entries(faceGroups).map(([key, group]) => {
<FaceAttempt const event = events?.find((ev) => ev.id == key);
key={image}
image={image} return (
faceNames={faceNames} <div
recognitionConfig={config.face_recognition} key={key}
selected={selectedFaces.includes(image)} className={cn(
onClick={(data, meta) => { "flex flex-col gap-2 rounded-lg bg-card p-2",
if (meta) { isMobile && "w-full",
onClickFace(image, meta); )}
} else { >
setSelectedEvent(data); <div className="flex flex-row justify-between">
} <div className="capitalize">
}} Person
onRefresh={onRefresh} {event?.sub_label
/> ? `: ${event.sub_label} (${Math.round((event.data.sub_label_score || 0) * 100)}%)`
))} : ": Unknown"}
</div>
{event && (
<Tooltip>
<TooltipTrigger>
<div
className="cursor-pointer"
onClick={() => {
navigate(`/explore?event_id=${event.id}`);
}}
>
<LuSearch className="size-4 text-muted-foreground" />
</div>
</TooltipTrigger>
<TooltipPortal>
<TooltipContent>
{t("details.item.button.viewInExplore", {
ns: "views/explore",
})}
</TooltipContent>
</TooltipPortal>
</Tooltip>
)}
</div>
<div
className={cn(
"gap-2",
isDesktop
? "flex flex-row flex-wrap"
: "grid grid-cols-2 sm:grid-cols-5 lg:grid-cols-6",
)}
>
{group.map((data: RecognizedFaceData) => (
<FaceAttempt
key={data.filename}
data={data}
faceNames={faceNames}
recognitionConfig={config.face_recognition}
selected={selectedFaces.includes(data.filename)}
onClick={(data, meta) => {
if (meta || selectedFaces.length > 0) {
onClickFace(data.filename, true);
} else if (event) {
setSelectedEvent(event);
}
}}
onRefresh={onRefresh}
/>
))}
</div>
</div>
);
})}
</div> </div>
</> </>
); );
} }
type FaceAttemptProps = { type FaceAttemptProps = {
image: string; data: RecognizedFaceData;
faceNames: string[]; faceNames: string[];
recognitionConfig: FaceRecognitionConfig; recognitionConfig: FaceRecognitionConfig;
selected: boolean; selected: boolean;
@ -477,7 +589,7 @@ type FaceAttemptProps = {
onRefresh: () => void; onRefresh: () => void;
}; };
function FaceAttempt({ function FaceAttempt({
image, data,
faceNames, faceNames,
recognitionConfig, recognitionConfig,
selected, selected,
@ -485,16 +597,6 @@ function FaceAttempt({
onRefresh, onRefresh,
}: FaceAttemptProps) { }: FaceAttemptProps) {
const { t } = useTranslation(["views/faceLibrary"]); const { t } = useTranslation(["views/faceLibrary"]);
const data = useMemo<RecognizedFaceData>(() => {
const parts = image.split("-");
return {
timestamp: Number.parseFloat(parts[0]),
eventId: `${parts[0]}-${parts[1]}`,
name: parts[2],
score: Number.parseFloat(parts[3]),
};
}, [image]);
const scoreStatus = useMemo(() => { const scoreStatus = useMemo(() => {
if (data.score >= recognitionConfig.recognition_threshold) { if (data.score >= recognitionConfig.recognition_threshold) {
@ -508,6 +610,8 @@ function FaceAttempt({
// interaction // interaction
const [newFace, setNewFace] = useState(false);
const imgRef = useRef<HTMLImageElement | null>(null); const imgRef = useRef<HTMLImageElement | null>(null);
useContextMenu(imgRef, () => { useContextMenu(imgRef, () => {
@ -519,7 +623,9 @@ function FaceAttempt({
const onTrainAttempt = useCallback( const onTrainAttempt = useCallback(
(trainName: string) => { (trainName: string) => {
axios axios
.post(`/faces/train/${trainName}/classify`, { training_file: image }) .post(`/faces/train/${trainName}/classify`, {
training_file: data.filename,
})
.then((resp) => { .then((resp) => {
if (resp.status == 200) { if (resp.status == 200) {
toast.success(t("toast.success.trainedFace"), { toast.success(t("toast.success.trainedFace"), {
@ -538,12 +644,12 @@ function FaceAttempt({
}); });
}); });
}, },
[image, onRefresh, t], [data, onRefresh, t],
); );
const onReprocess = useCallback(() => { const onReprocess = useCallback(() => {
axios axios
.post(`/faces/reprocess`, { training_file: image }) .post(`/faces/reprocess`, { training_file: data.filename })
.then((resp) => { .then((resp) => {
if (resp.status == 200) { if (resp.status == 200) {
toast.success(t("toast.success.updatedFaceScore"), { toast.success(t("toast.success.updatedFaceScore"), {
@ -561,79 +667,102 @@ function FaceAttempt({
position: "top-center", position: "top-center",
}); });
}); });
}, [image, onRefresh, t]); }, [data, onRefresh, t]);
return ( return (
<div <>
className={cn( {newFace && (
"relative flex cursor-pointer flex-col rounded-lg outline outline-[3px]", <TextEntryDialog
selected open={true}
? "shadow-selected outline-selected" setOpen={setNewFace}
: "outline-transparent duration-500", title={t("createFaceLibrary.new")}
)} onSave={(newName) => onTrainAttempt(newName)}
>
<div className="relative w-full overflow-hidden rounded-t-lg border border-t-0 *:text-card-foreground">
<img
ref={imgRef}
className="size-44"
src={`${baseUrl}clips/faces/train/${image}`}
onClick={(e) => onClick(data, e.metaKey || e.ctrlKey)}
/> />
<div className="absolute bottom-1 right-1 z-10 rounded-lg bg-black/50 px-2 py-1 text-xs text-white"> )}
<TimeAgo className="text-white" time={data.timestamp * 1000} dense />
<div
className={cn(
"relative flex cursor-pointer flex-col rounded-lg outline outline-[3px]",
selected
? "shadow-selected outline-selected"
: "outline-transparent duration-500",
)}
>
<div className="relative w-full overflow-hidden rounded-lg *:text-card-foreground">
<img
ref={imgRef}
className={cn("size-44", isMobile && "w-full")}
src={`${baseUrl}clips/faces/train/${data.filename}`}
onClick={(e) => onClick(data, e.metaKey || e.ctrlKey)}
/>
<div className="absolute bottom-1 right-1 z-10 rounded-lg bg-black/50 px-2 py-1 text-xs text-white">
<TimeAgo
className="text-white"
time={data.timestamp * 1000}
dense
/>
</div>
</div> </div>
</div> <div className="p-2">
<div className="rounded-b-lg bg-card p-2"> <div className="flex w-full flex-row items-center justify-between gap-2">
<div className="flex w-full flex-row items-center justify-between gap-2"> <div className="flex flex-col items-start text-xs text-primary-variant">
<div className="flex flex-col items-start text-xs text-primary-variant"> <div className="capitalize">{data.name}</div>
<div className="capitalize">{data.name}</div> <div
<div className={cn(
className={cn( "",
"", scoreStatus == "match" && "text-success",
scoreStatus == "match" && "text-success", scoreStatus == "potential" && "text-orange-400",
scoreStatus == "potential" && "text-orange-400", scoreStatus == "unknown" && "text-danger",
scoreStatus == "unknown" && "text-danger", )}
)} >
> {Math.round(data.score * 100)}%
{Math.round(data.score * 100)}% </div>
</div>
<div className="flex flex-row items-start justify-end gap-5 md:gap-4">
<Tooltip>
<DropdownMenu>
<DropdownMenuTrigger asChild>
<TooltipTrigger>
<AddFaceIcon className="size-5 cursor-pointer text-primary-variant hover:text-primary" />
</TooltipTrigger>
</DropdownMenuTrigger>
<DropdownMenuContent>
<DropdownMenuLabel>{t("trainFaceAs")}</DropdownMenuLabel>
<DropdownMenuItem
className="flex cursor-pointer gap-2 capitalize"
onClick={() => setNewFace(true)}
>
<LuPlus />
{t("createFaceLibrary.new")}
</DropdownMenuItem>
{faceNames.map((faceName) => (
<DropdownMenuItem
key={faceName}
className="flex cursor-pointer gap-2 capitalize"
onClick={() => onTrainAttempt(faceName)}
>
<LuScanFace />
{faceName}
</DropdownMenuItem>
))}
</DropdownMenuContent>
</DropdownMenu>
<TooltipContent>{t("trainFace")}</TooltipContent>
</Tooltip>
<Tooltip>
<TooltipTrigger>
<LuRefreshCw
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
onClick={() => onReprocess()}
/>
</TooltipTrigger>
<TooltipContent>{t("button.reprocessFace")}</TooltipContent>
</Tooltip>
</div> </div>
</div> </div>
<div className="flex flex-row items-start justify-end gap-5 md:gap-4">
<Tooltip>
<DropdownMenu>
<DropdownMenuTrigger asChild>
<TooltipTrigger>
<AddFaceIcon className="size-5 cursor-pointer text-primary-variant hover:text-primary" />
</TooltipTrigger>
</DropdownMenuTrigger>
<DropdownMenuContent>
<DropdownMenuLabel>{t("trainFaceAs")}</DropdownMenuLabel>
{faceNames.map((faceName) => (
<DropdownMenuItem
key={faceName}
className="cursor-pointer capitalize"
onClick={() => onTrainAttempt(faceName)}
>
{faceName}
</DropdownMenuItem>
))}
</DropdownMenuContent>
</DropdownMenu>
<TooltipContent>{t("trainFace")}</TooltipContent>
</Tooltip>
<Tooltip>
<TooltipTrigger>
<LuRefreshCw
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
onClick={() => onReprocess()}
/>
</TooltipTrigger>
<TooltipContent>{t("button.reprocessFace")}</TooltipContent>
</Tooltip>
</div>
</div> </div>
</div> </div>
</div> </>
); );
} }
@ -643,6 +772,8 @@ type FaceGridProps = {
onDelete: (name: string, ids: string[]) => void; onDelete: (name: string, ids: string[]) => void;
}; };
function FaceGrid({ faceImages, pageToggle, onDelete }: FaceGridProps) { function FaceGrid({ faceImages, pageToggle, onDelete }: FaceGridProps) {
const sortedFaces = useMemo(() => faceImages.sort().reverse(), [faceImages]);
return ( return (
<div <div
className={cn( className={cn(
@ -650,7 +781,7 @@ function FaceGrid({ faceImages, pageToggle, onDelete }: FaceGridProps) {
isDesktop ? "flex flex-wrap" : "grid grid-cols-2", isDesktop ? "flex flex-wrap" : "grid grid-cols-2",
)} )}
> >
{faceImages.map((image: string) => ( {sortedFaces.map((image: string) => (
<FaceImage <FaceImage
key={image} key={image}
name={pageToggle} name={pageToggle}

View File

@ -3,6 +3,7 @@ export type FaceLibraryData = {
}; };
export type RecognizedFaceData = { export type RecognizedFaceData = {
filename: string;
timestamp: number; timestamp: number;
eventId: string; eventId: string;
name: string; name: string;