mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
add mask as object filter
This commit is contained in:
parent
96ac2c29d6
commit
b2c7fc8f5b
@ -500,7 +500,7 @@ class FilterConfig():
|
||||
self._threshold = config['threshold']
|
||||
self._min_score = config.get('min_score')
|
||||
self._raw_mask = config.get('mask')
|
||||
self._mask = create_mask(frame_shape, self._raw_mask) if frame_shape else None
|
||||
self._mask = create_mask(frame_shape, self._raw_mask) if self._raw_mask else None
|
||||
|
||||
@property
|
||||
def min_area(self):
|
||||
@ -686,7 +686,12 @@ class CameraRtmpConfig():
|
||||
class MotionConfig():
|
||||
def __init__(self, global_config, config, frame_shape):
|
||||
self._raw_mask = config.get('mask')
|
||||
self._mask = create_mask(frame_shape, self._raw_mask) if self._raw_mask else None
|
||||
if self._raw_mask:
|
||||
self._mask = create_mask(frame_shape, self._raw_mask)
|
||||
else:
|
||||
default_mask = np.zeros(frame_shape, np.uint8)
|
||||
default_mask[:] = 255
|
||||
self._mask = default_mask
|
||||
self._threshold = config.get('threshold', global_config.get('threshold', 25))
|
||||
self._contour_area = config.get('contour_area', global_config.get('contour_area', 100))
|
||||
self._delta_alpha = config.get('delta_alpha', global_config.get('delta_alpha', 0.2))
|
||||
|
@ -5,7 +5,7 @@ from frigate.config import MotionConfig
|
||||
|
||||
|
||||
class MotionDetector():
|
||||
def __init__(self, frame_shape, mask, config: MotionConfig):
|
||||
def __init__(self, frame_shape, config: MotionConfig):
|
||||
self.config = config
|
||||
self.frame_shape = frame_shape
|
||||
self.resize_factor = frame_shape[0]/config.frame_height
|
||||
@ -14,7 +14,7 @@ class MotionDetector():
|
||||
self.avg_delta = np.zeros(self.motion_frame_size, np.float)
|
||||
self.motion_frame_count = 0
|
||||
self.frame_counter = 0
|
||||
resized_mask = cv2.resize(mask, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
|
||||
resized_mask = cv2.resize(config.mask, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
|
||||
self.mask = np.where(resized_mask==[0])
|
||||
|
||||
def detect(self, frame):
|
||||
|
@ -291,7 +291,7 @@ class CameraState():
|
||||
cv2.drawContours(frame_copy, [zone.contour], -1, zone.color, thickness)
|
||||
|
||||
if draw_options.get('mask'):
|
||||
mask_overlay = np.where(self.camera_config.mask==[0])
|
||||
mask_overlay = np.where(self.camera_config.motion.mask==[0])
|
||||
frame_copy[mask_overlay] = [0,0,0]
|
||||
|
||||
if draw_options.get('motion_boxes'):
|
||||
|
@ -31,7 +31,7 @@ from frigate.util import (EventsPerSecond, FrameManager,
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def filtered(obj, objects_to_track, object_filters, mask=None):
|
||||
def filtered(obj, objects_to_track, object_filters):
|
||||
object_name = obj[0]
|
||||
|
||||
if not object_name in objects_to_track:
|
||||
@ -54,13 +54,14 @@ def filtered(obj, objects_to_track, object_filters, mask=None):
|
||||
if obj_settings.min_score > obj[1]:
|
||||
return True
|
||||
|
||||
if not obj_settings.mask is None:
|
||||
# compute the coordinates of the object and make sure
|
||||
# the location isnt outside the bounds of the image (can happen from rounding)
|
||||
y_location = min(int(obj[2][3]), len(mask)-1)
|
||||
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(mask[0])-1)
|
||||
y_location = min(int(obj[2][3]), len(obj_settings.mask)-1)
|
||||
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(obj_settings.mask[0])-1)
|
||||
|
||||
# if the object is in a masked location, don't add it to detected objects
|
||||
if (not mask is None) and (mask[y_location][x_location] == 0):
|
||||
if obj_settings.mask[y_location][x_location] == 0:
|
||||
return True
|
||||
|
||||
return False
|
||||
@ -258,9 +259,8 @@ def track_camera(name, config: CameraConfig, model_shape, detection_queue, resul
|
||||
frame_shape = config.frame_shape
|
||||
objects_to_track = config.objects.track
|
||||
object_filters = config.objects.filters
|
||||
mask = config.mask
|
||||
|
||||
motion_detector = MotionDetector(frame_shape, mask, config.motion)
|
||||
motion_detector = MotionDetector(frame_shape, config.motion)
|
||||
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue, result_connection, model_shape)
|
||||
|
||||
object_tracker = ObjectTracker(config.detect)
|
||||
@ -268,7 +268,7 @@ def track_camera(name, config: CameraConfig, model_shape, detection_queue, resul
|
||||
frame_manager = SharedMemoryFrameManager()
|
||||
|
||||
process_frames(name, frame_queue, frame_shape, model_shape, frame_manager, motion_detector, object_detector,
|
||||
object_tracker, detected_objects_queue, process_info, objects_to_track, object_filters, mask, stop_event)
|
||||
object_tracker, detected_objects_queue, process_info, objects_to_track, object_filters, stop_event)
|
||||
|
||||
logger.info(f"{name}: exiting subprocess")
|
||||
|
||||
@ -278,7 +278,7 @@ def reduce_boxes(boxes):
|
||||
reduced_boxes = cv2.groupRectangles([list(b) for b in itertools.chain(boxes, boxes)], 1, 0.2)[0]
|
||||
return [tuple(b) for b in reduced_boxes]
|
||||
|
||||
def detect(object_detector, frame, model_shape, region, objects_to_track, object_filters, mask):
|
||||
def detect(object_detector, frame, model_shape, region, objects_to_track, object_filters):
|
||||
tensor_input = create_tensor_input(frame, model_shape, region)
|
||||
|
||||
detections = []
|
||||
@ -296,7 +296,7 @@ def detect(object_detector, frame, model_shape, region, objects_to_track, object
|
||||
(x_max-x_min)*(y_max-y_min),
|
||||
region)
|
||||
# apply object filters
|
||||
if filtered(det, objects_to_track, object_filters, mask):
|
||||
if filtered(det, objects_to_track, object_filters):
|
||||
continue
|
||||
detections.append(det)
|
||||
return detections
|
||||
@ -305,7 +305,7 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_s
|
||||
frame_manager: FrameManager, motion_detector: MotionDetector,
|
||||
object_detector: RemoteObjectDetector, object_tracker: ObjectTracker,
|
||||
detected_objects_queue: mp.Queue, process_info: Dict,
|
||||
objects_to_track: List[str], object_filters, mask, stop_event,
|
||||
objects_to_track: List[str], object_filters, stop_event,
|
||||
exit_on_empty: bool = False):
|
||||
|
||||
fps = process_info['process_fps']
|
||||
@ -358,7 +358,7 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_s
|
||||
# resize regions and detect
|
||||
detections = []
|
||||
for region in regions:
|
||||
detections.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters, mask))
|
||||
detections.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters))
|
||||
|
||||
#########
|
||||
# merge objects, check for clipped objects and look again up to 4 times
|
||||
@ -393,7 +393,7 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_s
|
||||
|
||||
regions.append(region)
|
||||
|
||||
selected_objects.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters, mask))
|
||||
selected_objects.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters))
|
||||
|
||||
refining = True
|
||||
else:
|
||||
|
Loading…
Reference in New Issue
Block a user