mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
fix default motion comment
This commit is contained in:
parent
a0235b7da4
commit
b2ce1edd5a
@ -211,7 +211,7 @@ motion:
|
|||||||
# Low values will cause things like moving shadows to be detected as motion for longer.
|
# Low values will cause things like moving shadows to be detected as motion for longer.
|
||||||
# https://www.geeksforgeeks.org/background-subtraction-in-an-image-using-concept-of-running-average/
|
# https://www.geeksforgeeks.org/background-subtraction-in-an-image-using-concept-of-running-average/
|
||||||
frame_alpha: 0.2
|
frame_alpha: 0.2
|
||||||
# Optional: Height of the resized motion frame (default: 80)
|
# Optional: Height of the resized motion frame (default: 50)
|
||||||
# This operates as an efficient blur alternative. Higher values will result in more granular motion detection at the expense
|
# This operates as an efficient blur alternative. Higher values will result in more granular motion detection at the expense
|
||||||
# of higher CPU usage. Lower values result in less CPU, but small changes may not register as motion.
|
# of higher CPU usage. Lower values result in less CPU, but small changes may not register as motion.
|
||||||
frame_height: 50
|
frame_height: 50
|
||||||
|
@ -75,7 +75,25 @@ def filtered(obj, objects_to_track, object_filters):
|
|||||||
|
|
||||||
|
|
||||||
def create_tensor_input(frame, model_shape, region):
|
def create_tensor_input(frame, model_shape, region):
|
||||||
cropped_frame = yuv_region_2_rgb(frame, region)
|
# TODO: is it faster to just convert grayscale to RGB? or repeat dimensions with numpy?
|
||||||
|
height = frame.shape[0] // 3 * 2
|
||||||
|
width = frame.shape[1]
|
||||||
|
|
||||||
|
# get the crop box if the region extends beyond the frame
|
||||||
|
crop_x1 = max(0, region[0])
|
||||||
|
crop_y1 = max(0, region[1])
|
||||||
|
crop_x2 = min(width, region[2])
|
||||||
|
crop_y2 = min(height, region[3])
|
||||||
|
|
||||||
|
size = region[3] - region[1]
|
||||||
|
cropped_frame = np.zeros((size, size), np.uint8)
|
||||||
|
|
||||||
|
cropped_frame[
|
||||||
|
0 : crop_y2 - crop_y1,
|
||||||
|
0 : crop_x2 - crop_x1,
|
||||||
|
] = frame[crop_y1:crop_y2, crop_x1:crop_x2]
|
||||||
|
|
||||||
|
cropped_frame = np.repeat(np.expand_dims(cropped_frame, -1), 3, 2)
|
||||||
|
|
||||||
# Resize to 300x300 if needed
|
# Resize to 300x300 if needed
|
||||||
if cropped_frame.shape != (model_shape[0], model_shape[1], 3):
|
if cropped_frame.shape != (model_shape[0], model_shape[1], 3):
|
||||||
|
Loading…
Reference in New Issue
Block a user