mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
switch to a queue for detected objects and expire objects after 1 second
This commit is contained in:
parent
122a1666ca
commit
b4e5c812ce
@ -81,51 +81,63 @@ def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_o
|
||||
score = scores[0, index]
|
||||
if score > 0.5:
|
||||
box = boxes[0, index].tolist()
|
||||
box[0] = (box[0] * region_size) + region_y_offset
|
||||
box[1] = (box[1] * region_size) + region_x_offset
|
||||
box[2] = (box[2] * region_size) + region_y_offset
|
||||
box[3] = (box[3] * region_size) + region_x_offset
|
||||
objects += [value, scores[0, index]] + box
|
||||
# only get the first 10 objects
|
||||
if len(objects) == 60:
|
||||
break
|
||||
objects.append({
|
||||
'name': str(category_index.get(value).get('name')),
|
||||
'score': float(score),
|
||||
'ymin': int((box[0] * region_size) + region_y_offset),
|
||||
'xmin': int((box[1] * region_size) + region_x_offset),
|
||||
'ymax': int((box[2] * region_size) + region_y_offset),
|
||||
'xmax': int((box[3] * region_size) + region_x_offset)
|
||||
})
|
||||
|
||||
return objects
|
||||
|
||||
class ObjectParser(threading.Thread):
|
||||
def __init__(self, objects_changed, objects_parsed, object_arrays):
|
||||
def __init__(self, object_queue, objects_parsed):
|
||||
threading.Thread.__init__(self)
|
||||
self._objects_changed = objects_changed
|
||||
self._object_queue = object_queue
|
||||
self._objects_parsed = objects_parsed
|
||||
self._object_arrays = object_arrays
|
||||
|
||||
def run(self):
|
||||
global DETECTED_OBJECTS
|
||||
while True:
|
||||
detected_objects = []
|
||||
# wait until object detection has run
|
||||
# TODO: what if something else changed while I was processing???
|
||||
with self._objects_changed:
|
||||
self._objects_changed.wait()
|
||||
obj = self._object_queue.get()
|
||||
print(obj)
|
||||
DETECTED_OBJECTS.append(obj)
|
||||
|
||||
for object_array in self._object_arrays:
|
||||
object_index = 0
|
||||
while(object_index < 60 and object_array[object_index] > 0):
|
||||
object_class = object_array[object_index]
|
||||
detected_objects.append({
|
||||
'name': str(category_index.get(object_class).get('name')),
|
||||
'score': object_array[object_index+1],
|
||||
'ymin': int(object_array[object_index+2]),
|
||||
'xmin': int(object_array[object_index+3]),
|
||||
'ymax': int(object_array[object_index+4]),
|
||||
'xmax': int(object_array[object_index+5])
|
||||
})
|
||||
object_index += 6
|
||||
DETECTED_OBJECTS = detected_objects
|
||||
# notify that objects were parsed
|
||||
with self._objects_parsed:
|
||||
self._objects_parsed.notify_all()
|
||||
|
||||
class ObjectCleaner(threading.Thread):
|
||||
def __init__(self, objects_parsed):
|
||||
threading.Thread.__init__(self)
|
||||
self._objects_parsed = objects_parsed
|
||||
|
||||
def run(self):
|
||||
global DETECTED_OBJECTS
|
||||
while True:
|
||||
|
||||
# expire the objects that are more than 1 second old
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# look for the first object found within the last second
|
||||
# (newest objects are appended to the end)
|
||||
detected_objects = DETECTED_OBJECTS.copy()
|
||||
num_to_delete = 0
|
||||
for obj in detected_objects:
|
||||
if now-obj['frame_time']<1:
|
||||
break
|
||||
num_to_delete += 1
|
||||
if num_to_delete > 0:
|
||||
del DETECTED_OBJECTS[:num_to_delete]
|
||||
|
||||
# notify that parsed objects were changed
|
||||
with self._objects_parsed:
|
||||
self._objects_parsed.notify_all()
|
||||
|
||||
# wait a bit before checking for more expired frames
|
||||
time.sleep(0.2)
|
||||
|
||||
class MqttMotionPublisher(threading.Thread):
|
||||
def __init__(self, client, topic_prefix, motion_changed, motion_flags):
|
||||
threading.Thread.__init__(self)
|
||||
@ -165,20 +177,17 @@ class MqttObjectPublisher(threading.Thread):
|
||||
|
||||
# initialize the payload
|
||||
payload = {}
|
||||
for obj in self.object_classes:
|
||||
payload[obj] = []
|
||||
|
||||
# wait until objects have been parsed
|
||||
with self.objects_parsed:
|
||||
self.objects_parsed.wait()
|
||||
|
||||
# loop over detected objects and populate
|
||||
# the payload
|
||||
# add all the person scores in detected objects and
|
||||
# average over past 1 seconds (5fps)
|
||||
detected_objects = DETECTED_OBJECTS.copy()
|
||||
for obj in detected_objects:
|
||||
if obj['name'] in self.object_classes:
|
||||
payload[obj['name']].append(obj)
|
||||
|
||||
avg_person_score = sum([obj['score'] for obj in detected_objects if obj['name'] == 'person'])/5
|
||||
payload['person'] = int(avg_person_score*100)
|
||||
|
||||
# send message for objects if different
|
||||
new_payload = json.dumps(payload, sort_keys=True)
|
||||
if new_payload != last_sent_payload:
|
||||
@ -229,10 +238,10 @@ def main():
|
||||
frame_ready = mp.Condition()
|
||||
# Condition for notifying that motion status changed globally
|
||||
motion_changed = mp.Condition()
|
||||
# Condition for notifying that object detection ran
|
||||
objects_changed = mp.Condition()
|
||||
# Condition for notifying that objects were parsed
|
||||
objects_parsed = mp.Condition()
|
||||
# Queue for detected objects
|
||||
object_queue = mp.Queue()
|
||||
# shape current frame so it can be treated as an image
|
||||
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
|
||||
@ -244,11 +253,10 @@ def main():
|
||||
motion_processes = []
|
||||
for region in regions:
|
||||
detection_process = mp.Process(target=process_frames, args=(shared_arr,
|
||||
region['output_array'],
|
||||
object_queue,
|
||||
shared_frame_time,
|
||||
frame_lock, frame_ready,
|
||||
region['motion_detected'],
|
||||
objects_changed,
|
||||
frame_shape,
|
||||
region['size'], region['x_offset'], region['y_offset'],
|
||||
False))
|
||||
@ -267,8 +275,10 @@ def main():
|
||||
motion_process.daemon = True
|
||||
motion_processes.append(motion_process)
|
||||
|
||||
object_parser = ObjectParser(objects_changed, objects_parsed, [region['output_array'] for region in regions])
|
||||
object_parser = ObjectParser(object_queue, objects_parsed)
|
||||
object_parser.start()
|
||||
object_cleaner = ObjectCleaner(objects_parsed)
|
||||
object_cleaner.start()
|
||||
|
||||
client = mqtt.Client()
|
||||
client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
|
||||
@ -347,6 +357,7 @@ def main():
|
||||
for motion_process in motion_processes:
|
||||
motion_process.join()
|
||||
object_parser.join()
|
||||
object_cleaner.join()
|
||||
mqtt_publisher.join()
|
||||
|
||||
# convert shared memory array into numpy array
|
||||
@ -391,8 +402,8 @@ def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_s
|
||||
video.release()
|
||||
|
||||
# do the actual object detection
|
||||
def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_lock, frame_ready,
|
||||
motion_detected, objects_changed, frame_shape, region_size, region_x_offset, region_y_offset,
|
||||
def process_frames(shared_arr, object_queue, shared_frame_time, frame_lock, frame_ready,
|
||||
motion_detected, frame_shape, region_size, region_x_offset, region_y_offset,
|
||||
debug):
|
||||
debug = True
|
||||
# shape shared input array into frame for processing
|
||||
@ -429,10 +440,10 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_lock,
|
||||
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
||||
# do the object detection
|
||||
objects = detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset, debug)
|
||||
# copy the detected objects to the output array, filling the array when needed
|
||||
shared_output_arr[:] = objects + [0.0] * (60-len(objects))
|
||||
with objects_changed:
|
||||
objects_changed.notify_all()
|
||||
for obj in objects:
|
||||
obj['frame_time'] = frame_time
|
||||
object_queue.put(obj)
|
||||
|
||||
|
||||
# do the actual motion detection
|
||||
def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, motion_detected, motion_changed,
|
||||
|
Loading…
Reference in New Issue
Block a user