Add Azure OpenAI as genai provider (#14102)

* add azure openai genai client

* docs
This commit is contained in:
Josh Hawkins 2024-10-01 14:57:40 -05:00 committed by GitHub
parent 5b0c1e5b9e
commit b5f5627ca6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 96 additions and 0 deletions

View File

@ -100,6 +100,28 @@ genai:
model: gpt-4o
```
## Azure OpenAI
Microsoft offers several vision models through Azure OpenAI. A subscription is required.
### Supported Models
You must use a vision capable model with Frigate. Current model variants can be found [in their documentation](https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models). At the time of writing, this includes `gpt-4o` and `gpt-4-turbo`.
### Get API Key
To start using Azure OpenAI, you must first [create a resource](https://learn.microsoft.com/azure/cognitive-services/openai/how-to/create-resource?pivots=web-portal#create-a-resource). You'll need your API key and resource URL, which must include the `api-version` parameter (see the example below). The model field is not required in your configuration as the model is part of the deployment name you chose when deploying the resource.
### Configuration
```yaml
genai:
enabled: True
provider: openai
base_url: https://example-endpoint.openai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2023-03-15-preview
api_key: "{FRIGATE_OPENAI_API_KEY}"
```
## Custom Prompts
Frigate sends multiple frames from the tracked object along with a prompt to your Generative AI provider asking it to generate a description. The default prompt is as follows:

View File

@ -11,6 +11,7 @@ __all__ = ["GenAIConfig", "GenAICameraConfig", "GenAIProviderEnum"]
class GenAIProviderEnum(str, Enum):
openai = "openai"
azure_openai = "azure_openai"
gemini = "gemini"
ollama = "ollama"

View File

@ -0,0 +1,73 @@
"""Azure OpenAI Provider for Frigate AI."""
import base64
import logging
from typing import Optional
from urllib.parse import parse_qs, urlparse
from openai import AzureOpenAI
from frigate.config import GenAIProviderEnum
from frigate.genai import GenAIClient, register_genai_provider
logger = logging.getLogger(__name__)
@register_genai_provider(GenAIProviderEnum.azure_openai)
class OpenAIClient(GenAIClient):
"""Generative AI client for Frigate using Azure OpenAI."""
provider: AzureOpenAI
def _init_provider(self):
"""Initialize the client."""
try:
parsed_url = urlparse(self.genai_config.base_url)
query_params = parse_qs(parsed_url.query)
api_version = query_params.get("api-version", [None])[0]
azure_endpoint = f"{parsed_url.scheme}://{parsed_url.netloc}/"
if not api_version:
logger.warning("Azure OpenAI url is missing API version.")
return None
except Exception as e:
logger.warning("Error parsing Azure OpenAI url: %s", str(e))
return None
return AzureOpenAI(
api_key=self.genai_config.api_key,
api_version=api_version,
azure_endpoint=azure_endpoint,
)
def _send(self, prompt: str, images: list[bytes]) -> Optional[str]:
"""Submit a request to Azure OpenAI."""
encoded_images = [base64.b64encode(image).decode("utf-8") for image in images]
try:
result = self.provider.chat.completions.create(
model=self.genai_config.model,
messages=[
{
"role": "user",
"content": [{"type": "text", "text": prompt}]
+ [
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image}",
"detail": "low",
},
}
for image in encoded_images
],
},
],
timeout=self.timeout,
)
except Exception as e:
logger.warning("Azure OpenAI returned an error: %s", str(e))
return None
if len(result.choices) > 0:
return result.choices[0].message.content.strip()
return None