diff --git a/detect_objects.py b/detect_objects.py index 939f514d8..6e9f30605 100644 --- a/detect_objects.py +++ b/detect_objects.py @@ -247,7 +247,8 @@ def main(): region['motion_detected'], objects_changed, frame_shape, - region['size'], region['x_offset'], region['y_offset'])) + region['size'], region['x_offset'], region['y_offset'], + False)) detection_process.daemon = True detection_processes.append(detection_process) @@ -381,7 +382,8 @@ def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_s # do the actual object detection def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_lock, frame_ready, - motion_detected, objects_changed, frame_shape, region_size, region_x_offset, region_y_offset): + motion_detected, objects_changed, frame_shape, region_size, region_x_offset, region_y_offset, + debug): debug = True # shape shared input array into frame for processing arr = tonumpyarray(shared_arr).reshape(frame_shape) @@ -416,7 +418,7 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_lock, # convert to RGB cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB) # do the object detection - objects = detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset, True) + objects = detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset, debug) # copy the detected objects to the output array, filling the array when needed shared_output_arr[:] = objects + [0.0] * (60-len(objects)) with objects_changed: @@ -461,7 +463,7 @@ def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, motion continue # look at the delta from the avg_frame - cv2.accumulateWeighted(gray, avg_frame, 0.5) + cv2.accumulateWeighted(gray, avg_frame, 0.01) frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg_frame)) thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1] @@ -504,7 +506,7 @@ def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, motion else: motion_frames = 0 - if debug and motion_frames > 0: + if debug and motion_frames >= 3: cv2.imwrite("/lab/debug/motion-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame) if __name__ == '__main__':