use a queue instead

This commit is contained in:
blakeblackshear 2019-03-25 06:24:36 -05:00
parent 7d3027e056
commit bca4e78e9a
2 changed files with 159 additions and 98 deletions

View File

@ -6,6 +6,7 @@ import datetime
import ctypes
import logging
import multiprocessing as mp
import queue
import threading
import json
from contextlib import closing
@ -19,7 +20,7 @@ from frigate.mqtt import MqttMotionPublisher, MqttObjectPublisher
from frigate.objects import ObjectParser, ObjectCleaner, BestPersonFrame
from frigate.motion import detect_motion
from frigate.video import fetch_frames, FrameTracker
from frigate.object_detection import prep_for_detection, detect_objects
from frigate.object_detection import FramePrepper, PreppedQueueProcessor, detect_objects
RTSP_URL = os.getenv('RTSP_URL')
@ -82,10 +83,20 @@ def main():
frame_ready = mp.Condition()
# Condition for notifying that motion status changed globally
motion_changed = mp.Condition()
prepped_frame_array = mp.Array(ctypes.c_uint8, 300*300*3)
# create shared value for storing the frame_time
prepped_frame_time = mp.Value('d', 0.0)
# Event for notifying that object detection needs a new frame
prepped_frame_grabbed = mp.Event()
prepped_frame_ready = mp.Event()
# Condition for notifying that objects were parsed
objects_parsed = mp.Condition()
# Queue for detected objects
object_queue = mp.Queue()
# Queue for prepped frames
prepped_frame_queue = queue.Queue()
prepped_frame_box = mp.Array(ctypes.c_uint16, 3)
# shape current frame so it can be treated as an image
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
@ -96,21 +107,18 @@ def main():
capture_process.daemon = True
# for each region, start a separate process for motion detection and object detection
detection_prep_processes = []
detection_prep_threads = []
motion_processes = []
for region in regions:
# possibly try putting these on threads and putting prepped
# frames in a queue
detection_prep_process = mp.Process(target=prep_for_detection, args=(shared_arr,
detection_prep_threads.append(FramePrepper(
frame_arr,
shared_frame_time,
frame_lock, frame_ready,
frame_ready,
frame_lock,
region['motion_detected'],
frame_shape,
region['size'], region['x_offset'], region['y_offset'],
region['prepped_frame_array'], region['prepped_frame_time'],
region['prepped_frame_lock']))
detection_prep_process.daemon = True
detection_prep_processes.append(detection_prep_process)
prepped_frame_queue
))
motion_process = mp.Process(target=detect_motion, args=(shared_arr,
shared_frame_time,
@ -124,13 +132,25 @@ def main():
motion_process.daemon = True
motion_processes.append(motion_process)
prepped_queue_processor = PreppedQueueProcessor(
prepped_frame_array,
prepped_frame_time,
prepped_frame_ready,
prepped_frame_grabbed,
prepped_frame_box,
prepped_frame_queue
)
prepped_queue_processor.start()
# create a process for object detection
# if the coprocessor is doing the work, can this run as a thread
# since it is waiting for IO?
detection_process = mp.Process(target=detect_objects, args=(
[region['prepped_frame_array'] for region in regions],
[region['prepped_frame_time'] for region in regions],
[region['prepped_frame_lock'] for region in regions],
[[region['size'], region['x_offset'], region['y_offset']] for region in regions],
motion_changed, [region['motion_detected'] for region in regions],
prepped_frame_array,
prepped_frame_time,
prepped_frame_ready,
prepped_frame_grabbed,
prepped_frame_box,
object_queue, DEBUG
))
detection_process.daemon = True
@ -181,9 +201,8 @@ def main():
print("capture_process pid ", capture_process.pid)
# start the object detection prep processes
for detection_prep_process in detection_prep_processes:
detection_prep_process.start()
print("detection_prep_process pid ", detection_prep_process.pid)
for detection_prep_thread in detection_prep_threads:
detection_prep_thread.start()
detection_process.start()
print("detection_process pid ", detection_process.pid)
@ -256,8 +275,8 @@ def main():
app.run(host='0.0.0.0', debug=False)
capture_process.join()
for detection_prep_process in detection_prep_processes:
detection_prep_process.join()
for detection_prep_thread in detection_prep_threads:
detection_prep_thread.join()
for motion_process in motion_processes:
motion_process.join()
detection_process.join()

View File

@ -1,5 +1,6 @@
import datetime
import cv2
import threading
import numpy as np
from edgetpu.detection.engine import DetectionEngine
from . util import tonumpyarray
@ -19,9 +20,11 @@ def ReadLabelFile(file_path):
ret[int(pair[0])] = pair[1].strip()
return ret
def detect_objects(prepped_frame_arrays, prepped_frame_times, prepped_frame_locks,
prepped_frame_boxes, motion_changed, motion_regions, object_queue, debug):
prepped_frame_nps = [tonumpyarray(prepped_frame_array) for prepped_frame_array in prepped_frame_arrays]
def detect_objects(prepped_frame_array, prepped_frame_time,
prepped_frame_ready, prepped_frame_grabbed,
prepped_frame_box, object_queue, debug):
prepped_frame_np = tonumpyarray(prepped_frame_array)
# Load the edgetpu engine and labels
engine = DetectionEngine(PATH_TO_CKPT)
labels = ReadLabelFile(PATH_TO_LABELS)
@ -29,85 +32,124 @@ def detect_objects(prepped_frame_arrays, prepped_frame_times, prepped_frame_lock
frame_time = 0.0
region_box = [0,0,0]
while True:
# while there is motion
while len([r for r in motion_regions if r.is_set()]) > 0:
# wait until a frame is ready
prepped_frame_grabbed.clear()
prepped_frame_ready.wait()
# loop over all the motion regions and look for objects
for i, motion_region in enumerate(motion_regions):
# skip the region if no motion
if not motion_region.is_set():
continue
prepped_frame_copy = prepped_frame_np.copy()
frame_time = prepped_frame_time.value
region_box[:] = prepped_frame_box
# make a copy of the cropped frame
with prepped_frame_locks[i]:
prepped_frame_copy = prepped_frame_nps[i].copy()
frame_time = prepped_frame_times[i].value
region_box[:] = prepped_frame_boxes[i]
prepped_frame_grabbed.set()
# Actual detection.
objects = engine.DetectWithInputTensor(prepped_frame_copy, threshold=0.5, top_k=3)
# print(engine.get_inference_time())
# put detected objects in the queue
if objects:
for obj in objects:
box = obj.bounding_box.flatten().tolist()
object_queue.put({
'frame_time': frame_time,
'name': str(labels[obj.label_id]),
'score': float(obj.score),
'xmin': int((box[0] * region_box[0]) + region_box[1]),
'ymin': int((box[1] * region_box[0]) + region_box[2]),
'xmax': int((box[2] * region_box[0]) + region_box[1]),
'ymax': int((box[3] * region_box[0]) + region_box[2])
})
else:
object_queue.put({
'frame_time': frame_time,
'name': 'dummy',
'score': 0.99,
'xmin': int(0 + region_box[1]),
'ymin': int(0 + region_box[2]),
'xmax': int(10 + region_box[1]),
'ymax': int(10 + region_box[2])
})
# wait for the global motion flag to change
with motion_changed:
motion_changed.wait()
# Actual detection.
objects = engine.DetectWithInputTensor(prepped_frame_copy, threshold=0.5, top_k=3)
# print(engine.get_inference_time())
# put detected objects in the queue
if objects:
for obj in objects:
box = obj.bounding_box.flatten().tolist()
object_queue.put({
'frame_time': frame_time,
'name': str(labels[obj.label_id]),
'score': float(obj.score),
'xmin': int((box[0] * region_box[0]) + region_box[1]),
'ymin': int((box[1] * region_box[0]) + region_box[2]),
'xmax': int((box[2] * region_box[0]) + region_box[1]),
'ymax': int((box[3] * region_box[0]) + region_box[2])
})
else:
object_queue.put({
'frame_time': frame_time,
'name': 'dummy',
'score': 0.99,
'xmin': int(0 + region_box[1]),
'ymin': int(0 + region_box[2]),
'xmax': int(10 + region_box[1]),
'ymax': int(10 + region_box[2])
})
def prep_for_detection(shared_whole_frame_array, shared_frame_time, frame_lock, frame_ready,
motion_detected, frame_shape, region_size, region_x_offset, region_y_offset,
prepped_frame_array, prepped_frame_time, prepped_frame_lock):
# shape shared input array into frame for processing
shared_whole_frame = tonumpyarray(shared_whole_frame_array).reshape(frame_shape)
class PreppedQueueProcessor(threading.Thread):
def __init__(self, prepped_frame_array,
prepped_frame_time,
prepped_frame_ready,
prepped_frame_grabbed,
prepped_frame_box,
prepped_frame_queue):
shared_prepped_frame = tonumpyarray(prepped_frame_array).reshape((1,300,300,3))
threading.Thread.__init__(self)
self.prepped_frame_array = prepped_frame_array
self.prepped_frame_time = prepped_frame_time
self.prepped_frame_ready = prepped_frame_ready
self.prepped_frame_grabbed = prepped_frame_grabbed
self.prepped_frame_box = prepped_frame_box
self.prepped_frame_queue = prepped_frame_queue
frame_time = 0.0
while True:
now = datetime.datetime.now().timestamp()
def run(self):
prepped_frame_np = tonumpyarray(self.prepped_frame_array)
# process queue...
while True:
frame = self.prepped_frame_queue.get()
print(self.prepped_frame_queue.qsize())
prepped_frame_np[:] = frame['frame']
self.prepped_frame_time.value = frame['frame_time']
self.prepped_frame_box[0] = frame['region_size']
self.prepped_frame_box[1] = frame['region_x_offset']
self.prepped_frame_box[2] = frame['region_y_offset']
self.prepped_frame_ready.set()
self.prepped_frame_grabbed.wait()
self.prepped_frame_ready.clear()
# wait until motion is detected
motion_detected.wait()
with frame_ready:
# if there isnt a frame ready for processing or it is old, wait for a new frame
if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
frame_ready.wait()
# should this be a region class?
class FramePrepper(threading.Thread):
def __init__(self, shared_frame, frame_time, frame_ready,
frame_lock, motion_detected,
region_size, region_x_offset, region_y_offset,
prepped_frame_queue):
# make a copy of the cropped frame
with frame_lock:
cropped_frame = shared_whole_frame[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
frame_time = shared_frame_time.value
threading.Thread.__init__(self)
self.shared_frame = shared_frame
self.frame_time = frame_time
self.frame_ready = frame_ready
self.frame_lock = frame_lock
self.motion_detected = motion_detected
self.region_size = region_size
self.region_x_offset = region_x_offset
self.region_y_offset = region_y_offset
self.prepped_frame_queue = prepped_frame_queue
# convert to RGB
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
# Resize to 300x300 if needed
if cropped_frame_rgb.shape != (300, 300, 3):
cropped_frame_rgb = cv2.resize(cropped_frame_rgb, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
frame_expanded = np.expand_dims(cropped_frame_rgb, axis=0)
def run(self):
frame_time = 0.0
while True:
now = datetime.datetime.now().timestamp()
# copy the prepped frame to the shared output array
with prepped_frame_lock:
shared_prepped_frame[:] = frame_expanded
prepped_frame_time.value = frame_time
# wait until motion is detected
self.motion_detected.wait()
with self.frame_ready:
# if there isnt a frame ready for processing or it is old, wait for a new frame
if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
self.frame_ready.wait()
# make a copy of the cropped frame
with self.frame_lock:
cropped_frame = self.shared_frame[self.region_y_offset:self.region_y_offset+self.region_size, self.region_x_offset:self.region_x_offset+self.region_size].copy()
frame_time = self.frame_time.value
# convert to RGB
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
# Resize to 300x300 if needed
if cropped_frame_rgb.shape != (300, 300, 3):
cropped_frame_rgb = cv2.resize(cropped_frame_rgb, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
frame_expanded = np.expand_dims(cropped_frame_rgb, axis=0)
# add the frame to the queue
self.prepped_frame_queue.put({
'frame_time': frame_time,
'frame': frame_expanded.flatten().copy(),
'region_size': self.region_size,
'region_x_offset': self.region_x_offset,
'region_y_offset': self.region_y_offset
})