mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-07 00:06:57 +01:00
use a queue instead
This commit is contained in:
parent
7d3027e056
commit
bca4e78e9a
@ -6,6 +6,7 @@ import datetime
|
||||
import ctypes
|
||||
import logging
|
||||
import multiprocessing as mp
|
||||
import queue
|
||||
import threading
|
||||
import json
|
||||
from contextlib import closing
|
||||
@ -19,7 +20,7 @@ from frigate.mqtt import MqttMotionPublisher, MqttObjectPublisher
|
||||
from frigate.objects import ObjectParser, ObjectCleaner, BestPersonFrame
|
||||
from frigate.motion import detect_motion
|
||||
from frigate.video import fetch_frames, FrameTracker
|
||||
from frigate.object_detection import prep_for_detection, detect_objects
|
||||
from frigate.object_detection import FramePrepper, PreppedQueueProcessor, detect_objects
|
||||
|
||||
RTSP_URL = os.getenv('RTSP_URL')
|
||||
|
||||
@ -82,10 +83,20 @@ def main():
|
||||
frame_ready = mp.Condition()
|
||||
# Condition for notifying that motion status changed globally
|
||||
motion_changed = mp.Condition()
|
||||
|
||||
prepped_frame_array = mp.Array(ctypes.c_uint8, 300*300*3)
|
||||
# create shared value for storing the frame_time
|
||||
prepped_frame_time = mp.Value('d', 0.0)
|
||||
# Event for notifying that object detection needs a new frame
|
||||
prepped_frame_grabbed = mp.Event()
|
||||
prepped_frame_ready = mp.Event()
|
||||
# Condition for notifying that objects were parsed
|
||||
objects_parsed = mp.Condition()
|
||||
# Queue for detected objects
|
||||
object_queue = mp.Queue()
|
||||
# Queue for prepped frames
|
||||
prepped_frame_queue = queue.Queue()
|
||||
prepped_frame_box = mp.Array(ctypes.c_uint16, 3)
|
||||
|
||||
# shape current frame so it can be treated as an image
|
||||
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
@ -96,21 +107,18 @@ def main():
|
||||
capture_process.daemon = True
|
||||
|
||||
# for each region, start a separate process for motion detection and object detection
|
||||
detection_prep_processes = []
|
||||
detection_prep_threads = []
|
||||
motion_processes = []
|
||||
for region in regions:
|
||||
# possibly try putting these on threads and putting prepped
|
||||
# frames in a queue
|
||||
detection_prep_process = mp.Process(target=prep_for_detection, args=(shared_arr,
|
||||
detection_prep_threads.append(FramePrepper(
|
||||
frame_arr,
|
||||
shared_frame_time,
|
||||
frame_lock, frame_ready,
|
||||
frame_ready,
|
||||
frame_lock,
|
||||
region['motion_detected'],
|
||||
frame_shape,
|
||||
region['size'], region['x_offset'], region['y_offset'],
|
||||
region['prepped_frame_array'], region['prepped_frame_time'],
|
||||
region['prepped_frame_lock']))
|
||||
detection_prep_process.daemon = True
|
||||
detection_prep_processes.append(detection_prep_process)
|
||||
prepped_frame_queue
|
||||
))
|
||||
|
||||
motion_process = mp.Process(target=detect_motion, args=(shared_arr,
|
||||
shared_frame_time,
|
||||
@ -124,13 +132,25 @@ def main():
|
||||
motion_process.daemon = True
|
||||
motion_processes.append(motion_process)
|
||||
|
||||
prepped_queue_processor = PreppedQueueProcessor(
|
||||
prepped_frame_array,
|
||||
prepped_frame_time,
|
||||
prepped_frame_ready,
|
||||
prepped_frame_grabbed,
|
||||
prepped_frame_box,
|
||||
prepped_frame_queue
|
||||
)
|
||||
prepped_queue_processor.start()
|
||||
|
||||
# create a process for object detection
|
||||
# if the coprocessor is doing the work, can this run as a thread
|
||||
# since it is waiting for IO?
|
||||
detection_process = mp.Process(target=detect_objects, args=(
|
||||
[region['prepped_frame_array'] for region in regions],
|
||||
[region['prepped_frame_time'] for region in regions],
|
||||
[region['prepped_frame_lock'] for region in regions],
|
||||
[[region['size'], region['x_offset'], region['y_offset']] for region in regions],
|
||||
motion_changed, [region['motion_detected'] for region in regions],
|
||||
prepped_frame_array,
|
||||
prepped_frame_time,
|
||||
prepped_frame_ready,
|
||||
prepped_frame_grabbed,
|
||||
prepped_frame_box,
|
||||
object_queue, DEBUG
|
||||
))
|
||||
detection_process.daemon = True
|
||||
@ -181,9 +201,8 @@ def main():
|
||||
print("capture_process pid ", capture_process.pid)
|
||||
|
||||
# start the object detection prep processes
|
||||
for detection_prep_process in detection_prep_processes:
|
||||
detection_prep_process.start()
|
||||
print("detection_prep_process pid ", detection_prep_process.pid)
|
||||
for detection_prep_thread in detection_prep_threads:
|
||||
detection_prep_thread.start()
|
||||
|
||||
detection_process.start()
|
||||
print("detection_process pid ", detection_process.pid)
|
||||
@ -256,8 +275,8 @@ def main():
|
||||
app.run(host='0.0.0.0', debug=False)
|
||||
|
||||
capture_process.join()
|
||||
for detection_prep_process in detection_prep_processes:
|
||||
detection_prep_process.join()
|
||||
for detection_prep_thread in detection_prep_threads:
|
||||
detection_prep_thread.join()
|
||||
for motion_process in motion_processes:
|
||||
motion_process.join()
|
||||
detection_process.join()
|
||||
|
@ -1,5 +1,6 @@
|
||||
import datetime
|
||||
import cv2
|
||||
import threading
|
||||
import numpy as np
|
||||
from edgetpu.detection.engine import DetectionEngine
|
||||
from . util import tonumpyarray
|
||||
@ -19,9 +20,11 @@ def ReadLabelFile(file_path):
|
||||
ret[int(pair[0])] = pair[1].strip()
|
||||
return ret
|
||||
|
||||
def detect_objects(prepped_frame_arrays, prepped_frame_times, prepped_frame_locks,
|
||||
prepped_frame_boxes, motion_changed, motion_regions, object_queue, debug):
|
||||
prepped_frame_nps = [tonumpyarray(prepped_frame_array) for prepped_frame_array in prepped_frame_arrays]
|
||||
def detect_objects(prepped_frame_array, prepped_frame_time,
|
||||
prepped_frame_ready, prepped_frame_grabbed,
|
||||
prepped_frame_box, object_queue, debug):
|
||||
prepped_frame_np = tonumpyarray(prepped_frame_array)
|
||||
|
||||
# Load the edgetpu engine and labels
|
||||
engine = DetectionEngine(PATH_TO_CKPT)
|
||||
labels = ReadLabelFile(PATH_TO_LABELS)
|
||||
@ -29,85 +32,124 @@ def detect_objects(prepped_frame_arrays, prepped_frame_times, prepped_frame_lock
|
||||
frame_time = 0.0
|
||||
region_box = [0,0,0]
|
||||
while True:
|
||||
# while there is motion
|
||||
while len([r for r in motion_regions if r.is_set()]) > 0:
|
||||
# wait until a frame is ready
|
||||
prepped_frame_grabbed.clear()
|
||||
prepped_frame_ready.wait()
|
||||
|
||||
# loop over all the motion regions and look for objects
|
||||
for i, motion_region in enumerate(motion_regions):
|
||||
# skip the region if no motion
|
||||
if not motion_region.is_set():
|
||||
continue
|
||||
prepped_frame_copy = prepped_frame_np.copy()
|
||||
frame_time = prepped_frame_time.value
|
||||
region_box[:] = prepped_frame_box
|
||||
|
||||
# make a copy of the cropped frame
|
||||
with prepped_frame_locks[i]:
|
||||
prepped_frame_copy = prepped_frame_nps[i].copy()
|
||||
frame_time = prepped_frame_times[i].value
|
||||
region_box[:] = prepped_frame_boxes[i]
|
||||
prepped_frame_grabbed.set()
|
||||
|
||||
# Actual detection.
|
||||
objects = engine.DetectWithInputTensor(prepped_frame_copy, threshold=0.5, top_k=3)
|
||||
# print(engine.get_inference_time())
|
||||
# put detected objects in the queue
|
||||
if objects:
|
||||
for obj in objects:
|
||||
box = obj.bounding_box.flatten().tolist()
|
||||
object_queue.put({
|
||||
'frame_time': frame_time,
|
||||
'name': str(labels[obj.label_id]),
|
||||
'score': float(obj.score),
|
||||
'xmin': int((box[0] * region_box[0]) + region_box[1]),
|
||||
'ymin': int((box[1] * region_box[0]) + region_box[2]),
|
||||
'xmax': int((box[2] * region_box[0]) + region_box[1]),
|
||||
'ymax': int((box[3] * region_box[0]) + region_box[2])
|
||||
})
|
||||
else:
|
||||
object_queue.put({
|
||||
'frame_time': frame_time,
|
||||
'name': 'dummy',
|
||||
'score': 0.99,
|
||||
'xmin': int(0 + region_box[1]),
|
||||
'ymin': int(0 + region_box[2]),
|
||||
'xmax': int(10 + region_box[1]),
|
||||
'ymax': int(10 + region_box[2])
|
||||
})
|
||||
# wait for the global motion flag to change
|
||||
with motion_changed:
|
||||
motion_changed.wait()
|
||||
# Actual detection.
|
||||
objects = engine.DetectWithInputTensor(prepped_frame_copy, threshold=0.5, top_k=3)
|
||||
# print(engine.get_inference_time())
|
||||
# put detected objects in the queue
|
||||
if objects:
|
||||
for obj in objects:
|
||||
box = obj.bounding_box.flatten().tolist()
|
||||
object_queue.put({
|
||||
'frame_time': frame_time,
|
||||
'name': str(labels[obj.label_id]),
|
||||
'score': float(obj.score),
|
||||
'xmin': int((box[0] * region_box[0]) + region_box[1]),
|
||||
'ymin': int((box[1] * region_box[0]) + region_box[2]),
|
||||
'xmax': int((box[2] * region_box[0]) + region_box[1]),
|
||||
'ymax': int((box[3] * region_box[0]) + region_box[2])
|
||||
})
|
||||
else:
|
||||
object_queue.put({
|
||||
'frame_time': frame_time,
|
||||
'name': 'dummy',
|
||||
'score': 0.99,
|
||||
'xmin': int(0 + region_box[1]),
|
||||
'ymin': int(0 + region_box[2]),
|
||||
'xmax': int(10 + region_box[1]),
|
||||
'ymax': int(10 + region_box[2])
|
||||
})
|
||||
|
||||
def prep_for_detection(shared_whole_frame_array, shared_frame_time, frame_lock, frame_ready,
|
||||
motion_detected, frame_shape, region_size, region_x_offset, region_y_offset,
|
||||
prepped_frame_array, prepped_frame_time, prepped_frame_lock):
|
||||
# shape shared input array into frame for processing
|
||||
shared_whole_frame = tonumpyarray(shared_whole_frame_array).reshape(frame_shape)
|
||||
class PreppedQueueProcessor(threading.Thread):
|
||||
def __init__(self, prepped_frame_array,
|
||||
prepped_frame_time,
|
||||
prepped_frame_ready,
|
||||
prepped_frame_grabbed,
|
||||
prepped_frame_box,
|
||||
prepped_frame_queue):
|
||||
|
||||
shared_prepped_frame = tonumpyarray(prepped_frame_array).reshape((1,300,300,3))
|
||||
threading.Thread.__init__(self)
|
||||
self.prepped_frame_array = prepped_frame_array
|
||||
self.prepped_frame_time = prepped_frame_time
|
||||
self.prepped_frame_ready = prepped_frame_ready
|
||||
self.prepped_frame_grabbed = prepped_frame_grabbed
|
||||
self.prepped_frame_box = prepped_frame_box
|
||||
self.prepped_frame_queue = prepped_frame_queue
|
||||
|
||||
frame_time = 0.0
|
||||
while True:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
def run(self):
|
||||
prepped_frame_np = tonumpyarray(self.prepped_frame_array)
|
||||
# process queue...
|
||||
while True:
|
||||
frame = self.prepped_frame_queue.get()
|
||||
print(self.prepped_frame_queue.qsize())
|
||||
prepped_frame_np[:] = frame['frame']
|
||||
self.prepped_frame_time.value = frame['frame_time']
|
||||
self.prepped_frame_box[0] = frame['region_size']
|
||||
self.prepped_frame_box[1] = frame['region_x_offset']
|
||||
self.prepped_frame_box[2] = frame['region_y_offset']
|
||||
self.prepped_frame_ready.set()
|
||||
self.prepped_frame_grabbed.wait()
|
||||
self.prepped_frame_ready.clear()
|
||||
|
||||
# wait until motion is detected
|
||||
motion_detected.wait()
|
||||
|
||||
with frame_ready:
|
||||
# if there isnt a frame ready for processing or it is old, wait for a new frame
|
||||
if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
|
||||
frame_ready.wait()
|
||||
# should this be a region class?
|
||||
class FramePrepper(threading.Thread):
|
||||
def __init__(self, shared_frame, frame_time, frame_ready,
|
||||
frame_lock, motion_detected,
|
||||
region_size, region_x_offset, region_y_offset,
|
||||
prepped_frame_queue):
|
||||
|
||||
# make a copy of the cropped frame
|
||||
with frame_lock:
|
||||
cropped_frame = shared_whole_frame[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
||||
frame_time = shared_frame_time.value
|
||||
threading.Thread.__init__(self)
|
||||
self.shared_frame = shared_frame
|
||||
self.frame_time = frame_time
|
||||
self.frame_ready = frame_ready
|
||||
self.frame_lock = frame_lock
|
||||
self.motion_detected = motion_detected
|
||||
self.region_size = region_size
|
||||
self.region_x_offset = region_x_offset
|
||||
self.region_y_offset = region_y_offset
|
||||
self.prepped_frame_queue = prepped_frame_queue
|
||||
|
||||
# convert to RGB
|
||||
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
||||
# Resize to 300x300 if needed
|
||||
if cropped_frame_rgb.shape != (300, 300, 3):
|
||||
cropped_frame_rgb = cv2.resize(cropped_frame_rgb, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
||||
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
||||
frame_expanded = np.expand_dims(cropped_frame_rgb, axis=0)
|
||||
def run(self):
|
||||
frame_time = 0.0
|
||||
while True:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
|
||||
# copy the prepped frame to the shared output array
|
||||
with prepped_frame_lock:
|
||||
shared_prepped_frame[:] = frame_expanded
|
||||
prepped_frame_time.value = frame_time
|
||||
# wait until motion is detected
|
||||
self.motion_detected.wait()
|
||||
|
||||
with self.frame_ready:
|
||||
# if there isnt a frame ready for processing or it is old, wait for a new frame
|
||||
if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
|
||||
self.frame_ready.wait()
|
||||
|
||||
# make a copy of the cropped frame
|
||||
with self.frame_lock:
|
||||
cropped_frame = self.shared_frame[self.region_y_offset:self.region_y_offset+self.region_size, self.region_x_offset:self.region_x_offset+self.region_size].copy()
|
||||
frame_time = self.frame_time.value
|
||||
|
||||
# convert to RGB
|
||||
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
||||
# Resize to 300x300 if needed
|
||||
if cropped_frame_rgb.shape != (300, 300, 3):
|
||||
cropped_frame_rgb = cv2.resize(cropped_frame_rgb, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
||||
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
||||
frame_expanded = np.expand_dims(cropped_frame_rgb, axis=0)
|
||||
|
||||
# add the frame to the queue
|
||||
self.prepped_frame_queue.put({
|
||||
'frame_time': frame_time,
|
||||
'frame': frame_expanded.flatten().copy(),
|
||||
'region_size': self.region_size,
|
||||
'region_x_offset': self.region_x_offset,
|
||||
'region_y_offset': self.region_y_offset
|
||||
})
|
||||
|
Loading…
Reference in New Issue
Block a user