mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-08-13 13:47:36 +02:00
Replace object tracker with SORT
Source: https://github.com/abewley/sort Commit: c1b808481200d7997413c6e831bc59c8b08b61b8 It has better accuracy when measured in my environment. It uses a Kalman filter to correct "bad" detections and is able to recover from lost tracks to some extent. Deep sort is also an alterative but adds more complexity. This was a key to be able to get a room tracker working good without losing track of objects all the time. Input configuration exposed to user config for users to calibrate after their needs. Removed main function together with some plot dependencies from sort.py to not be needed to add unnecessary deps to frigate.
This commit is contained in:
parent
3a1f1c946b
commit
d746d84bd4
@ -25,6 +25,8 @@ RUN apt -qq update && apt -qq install --no-install-recommends -y \
|
|||||||
imutils \
|
imutils \
|
||||||
scipy \
|
scipy \
|
||||||
psutil \
|
psutil \
|
||||||
|
# SORT deps
|
||||||
|
filterpy scikit-image lap \
|
||||||
&& python3.7 -m pip install -U \
|
&& python3.7 -m pip install -U \
|
||||||
Flask \
|
Flask \
|
||||||
paho-mqtt \
|
paho-mqtt \
|
||||||
@ -47,7 +49,7 @@ RUN apt -qq update && apt -qq install --no-install-recommends -y \
|
|||||||
# get model and labels
|
# get model and labels
|
||||||
RUN wget -q https://github.com/google-coral/edgetpu/raw/master/test_data/ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite -O /edgetpu_model.tflite --trust-server-names
|
RUN wget -q https://github.com/google-coral/edgetpu/raw/master/test_data/ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite -O /edgetpu_model.tflite --trust-server-names
|
||||||
RUN wget -q https://dl.google.com/coral/canned_models/coco_labels.txt -O /labelmap.txt --trust-server-names
|
RUN wget -q https://dl.google.com/coral/canned_models/coco_labels.txt -O /labelmap.txt --trust-server-names
|
||||||
RUN wget -q https://github.com/google-coral/edgetpu/raw/master/test_data/ssd_mobilenet_v2_coco_quant_postprocess.tflite -O /cpu_model.tflite
|
RUN wget -q https://github.com/google-coral/edgetpu/raw/master/test_data/ssd_mobilenet_v2_coco_quant_postprocess.tflite -O /cpu_model.tflite
|
||||||
|
|
||||||
|
|
||||||
RUN mkdir /cache /clips
|
RUN mkdir /cache /clips
|
||||||
|
@ -83,7 +83,7 @@ cameras:
|
|||||||
# hwaccel_args: []
|
# hwaccel_args: []
|
||||||
# input_args: []
|
# input_args: []
|
||||||
# output_args: []
|
# output_args: []
|
||||||
|
|
||||||
################
|
################
|
||||||
## Optionally specify the resolution of the video feed. Frigate will try to auto detect if not specified
|
## Optionally specify the resolution of the video feed. Frigate will try to auto detect if not specified
|
||||||
################
|
################
|
||||||
@ -92,20 +92,20 @@ cameras:
|
|||||||
|
|
||||||
################
|
################
|
||||||
## Optional mask. Must be the same aspect ratio as your video feed.
|
## Optional mask. Must be the same aspect ratio as your video feed.
|
||||||
##
|
##
|
||||||
## The mask works by looking at the bottom center of the bounding box for the detected
|
## The mask works by looking at the bottom center of the bounding box for the detected
|
||||||
## person in the image. If that pixel in the mask is a black pixel, it ignores it as a
|
## person in the image. If that pixel in the mask is a black pixel, it ignores it as a
|
||||||
## false positive. In my mask, the grass and driveway visible from my backdoor camera
|
## false positive. In my mask, the grass and driveway visible from my backdoor camera
|
||||||
## are white. The garage doors, sky, and trees (anywhere it would be impossible for a
|
## are white. The garage doors, sky, and trees (anywhere it would be impossible for a
|
||||||
## person to stand) are black.
|
## person to stand) are black.
|
||||||
##
|
##
|
||||||
## Masked areas are also ignored for motion detection.
|
## Masked areas are also ignored for motion detection.
|
||||||
################
|
################
|
||||||
# mask: back-mask.bmp
|
# mask: back-mask.bmp
|
||||||
|
|
||||||
################
|
################
|
||||||
# Allows you to limit the framerate within frigate for cameras that do not support
|
# Allows you to limit the framerate within frigate for cameras that do not support
|
||||||
# custom framerates. A value of 1 tells frigate to look at every frame, 2 every 2nd frame,
|
# custom framerates. A value of 1 tells frigate to look at every frame, 2 every 2nd frame,
|
||||||
# 3 every 3rd frame, etc.
|
# 3 every 3rd frame, etc.
|
||||||
################
|
################
|
||||||
take_frame: 1
|
take_frame: 1
|
||||||
@ -149,3 +149,19 @@ cameras:
|
|||||||
min_area: 5000
|
min_area: 5000
|
||||||
max_area: 100000
|
max_area: 100000
|
||||||
threshold: 0.5
|
threshold: 0.5
|
||||||
|
|
||||||
|
################
|
||||||
|
## Tracker configuration
|
||||||
|
##
|
||||||
|
## If you have problems with keeping track of objects try changing these constants.
|
||||||
|
## See SORT project for details:
|
||||||
|
## https://github.com/abewley/sort/blob/master/sort.py
|
||||||
|
##
|
||||||
|
## min_hits: Minimum number of hits to start tracking an object.
|
||||||
|
## max_age: Number of missed frames before discarding track.
|
||||||
|
## iou_threshold: Intersection over union threshold.
|
||||||
|
################
|
||||||
|
tracker:
|
||||||
|
min_hits: 1
|
||||||
|
max_age: 5
|
||||||
|
iou_threshold: 0.2
|
||||||
|
@ -22,10 +22,6 @@ COLOR_MAP = {}
|
|||||||
for key, val in LABELS.items():
|
for key, val in LABELS.items():
|
||||||
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
|
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
|
||||||
|
|
||||||
def filter_false_positives(event):
|
|
||||||
if len(event['history']) < 2:
|
|
||||||
return True
|
|
||||||
return False
|
|
||||||
|
|
||||||
class TrackedObjectProcessor(threading.Thread):
|
class TrackedObjectProcessor(threading.Thread):
|
||||||
def __init__(self, config, client, topic_prefix, tracked_objects_queue, event_queue):
|
def __init__(self, config, client, topic_prefix, tracked_objects_queue, event_queue):
|
||||||
@ -70,13 +66,11 @@ class TrackedObjectProcessor(threading.Thread):
|
|||||||
updated_ids = list(set(current_ids).intersection(previous_ids))
|
updated_ids = list(set(current_ids).intersection(previous_ids))
|
||||||
|
|
||||||
for id in new_ids:
|
for id in new_ids:
|
||||||
# only register the object here if we are sure it isnt a false positive
|
tracked_objects[id] = current_tracked_objects[id]
|
||||||
if not filter_false_positives(current_tracked_objects[id]):
|
# publish events to mqtt
|
||||||
tracked_objects[id] = current_tracked_objects[id]
|
self.client.publish(f"{self.topic_prefix}/{camera}/events/start", json.dumps(tracked_objects[id]), retain=False)
|
||||||
# publish events to mqtt
|
self.event_queue.put(('start', camera, tracked_objects[id]))
|
||||||
self.client.publish(f"{self.topic_prefix}/{camera}/events/start", json.dumps(tracked_objects[id]), retain=False)
|
|
||||||
self.event_queue.put(('start', camera, tracked_objects[id]))
|
|
||||||
|
|
||||||
for id in updated_ids:
|
for id in updated_ids:
|
||||||
tracked_objects[id] = current_tracked_objects[id]
|
tracked_objects[id] = current_tracked_objects[id]
|
||||||
|
|
||||||
|
@ -1,26 +1,15 @@
|
|||||||
import time
|
|
||||||
import datetime
|
|
||||||
import threading
|
|
||||||
import cv2
|
|
||||||
import itertools
|
|
||||||
import copy
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import random
|
from frigate.sort import Sort
|
||||||
import string
|
|
||||||
import multiprocessing as mp
|
|
||||||
from collections import defaultdict
|
|
||||||
from scipy.spatial import distance as dist
|
|
||||||
from frigate.util import draw_box_with_label, calculate_region
|
|
||||||
|
|
||||||
class ObjectTracker():
|
class ObjectTracker():
|
||||||
def __init__(self, max_disappeared):
|
def __init__(self, min_hits, max_age, iou_threshold):
|
||||||
self.tracked_objects = {}
|
self.tracked_objects = {}
|
||||||
self.disappeared = {}
|
self.disappeared = {}
|
||||||
self.max_disappeared = max_disappeared
|
self.max_age = max_age
|
||||||
|
self.mot_tracker = Sort(min_hits=min_hits, max_age=self.max_age, iou_threshold=iou_threshold)
|
||||||
|
|
||||||
def register(self, index, obj):
|
def register(self, id, obj):
|
||||||
rand_id = ''.join(random.choices(string.ascii_lowercase + string.digits, k=6))
|
|
||||||
id = f"{obj['frame_time']}-{rand_id}"
|
|
||||||
obj['id'] = id
|
obj['id'] = id
|
||||||
obj['start_time'] = obj['frame_time']
|
obj['start_time'] = obj['frame_time']
|
||||||
obj['top_score'] = obj['score']
|
obj['top_score'] = obj['score']
|
||||||
@ -31,14 +20,14 @@ class ObjectTracker():
|
|||||||
def deregister(self, id):
|
def deregister(self, id):
|
||||||
del self.tracked_objects[id]
|
del self.tracked_objects[id]
|
||||||
del self.disappeared[id]
|
del self.disappeared[id]
|
||||||
|
|
||||||
def update(self, id, new_obj):
|
def update(self, id, new_obj):
|
||||||
self.disappeared[id] = 0
|
self.disappeared[id] = 0
|
||||||
self.tracked_objects[id].update(new_obj)
|
self.tracked_objects[id].update(new_obj)
|
||||||
self.add_history(self.tracked_objects[id])
|
self.add_history(self.tracked_objects[id])
|
||||||
if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']:
|
if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']:
|
||||||
self.tracked_objects[id]['top_score'] = self.tracked_objects[id]['score']
|
self.tracked_objects[id]['top_score'] = self.tracked_objects[id]['score']
|
||||||
|
|
||||||
def add_history(self, obj):
|
def add_history(self, obj):
|
||||||
entry = {
|
entry = {
|
||||||
'score': obj['score'],
|
'score': obj['score'],
|
||||||
@ -56,111 +45,47 @@ class ObjectTracker():
|
|||||||
obj['history'] = [entry]
|
obj['history'] = [entry]
|
||||||
|
|
||||||
def match_and_update(self, frame_time, new_objects):
|
def match_and_update(self, frame_time, new_objects):
|
||||||
# group by name
|
a = []
|
||||||
new_object_groups = defaultdict(lambda: [])
|
for i, obj in enumerate(new_objects):
|
||||||
for obj in new_objects:
|
a.append(list(obj[2]) + [obj[1], i])
|
||||||
new_object_groups[obj[0]].append({
|
|
||||||
'label': obj[0],
|
new_tracked_ids = {}
|
||||||
'score': obj[1],
|
if len(a) == 0:
|
||||||
'box': obj[2],
|
self.mot_tracker.update()
|
||||||
'area': obj[3],
|
else:
|
||||||
'region': obj[4],
|
new_tracked = self.mot_tracker.update(np.array(a))
|
||||||
'frame_time': frame_time
|
for t in new_tracked:
|
||||||
})
|
# Convert from numpy float array to list of ints.
|
||||||
|
int_arr = t.astype(np.int).tolist()
|
||||||
# update any tracked objects with labels that are not
|
new_tracked_ids[str(int_arr[-2])] = int_arr
|
||||||
# seen in the current objects and deregister if needed
|
|
||||||
|
# Remove lost tracks
|
||||||
for obj in list(self.tracked_objects.values()):
|
for obj in list(self.tracked_objects.values()):
|
||||||
if not obj['label'] in new_object_groups:
|
if obj['id'] not in new_tracked_ids:
|
||||||
if self.disappeared[obj['id']] >= self.max_disappeared:
|
# SORT will not return "missed" objects even though it still tracks them.
|
||||||
|
# Therefore, we need to count in the max_age here as well.
|
||||||
|
if self.disappeared[obj['id']] > self.max_age:
|
||||||
self.deregister(obj['id'])
|
self.deregister(obj['id'])
|
||||||
else:
|
else:
|
||||||
self.disappeared[obj['id']] += 1
|
self.disappeared[obj['id']] += 1
|
||||||
|
|
||||||
if len(new_objects) == 0:
|
|
||||||
return
|
|
||||||
|
|
||||||
# track objects for each label type
|
|
||||||
for label, group in new_object_groups.items():
|
|
||||||
current_objects = [o for o in self.tracked_objects.values() if o['label'] == label]
|
|
||||||
current_ids = [o['id'] for o in current_objects]
|
|
||||||
current_centroids = np.array([o['centroid'] for o in current_objects])
|
|
||||||
|
|
||||||
# compute centroids of new objects
|
# Add/update new trackings
|
||||||
for obj in group:
|
for tracker_id, track in new_tracked_ids.items():
|
||||||
centroid_x = int((obj['box'][0]+obj['box'][2]) / 2.0)
|
new_object_index = int(track[-1])
|
||||||
centroid_y = int((obj['box'][1]+obj['box'][3]) / 2.0)
|
enhanced_box = track[0:4]
|
||||||
obj['centroid'] = (centroid_x, centroid_y)
|
new_obj = new_objects[new_object_index]
|
||||||
|
obj = {
|
||||||
if len(current_objects) == 0:
|
'label': new_obj[0],
|
||||||
for index, obj in enumerate(group):
|
'score': new_obj[1],
|
||||||
self.register(index, obj)
|
'box': enhanced_box,
|
||||||
return
|
'area': new_obj[3],
|
||||||
|
'region': new_obj[4],
|
||||||
new_centroids = np.array([o['centroid'] for o in group])
|
'frame_time': frame_time
|
||||||
|
}
|
||||||
# compute the distance between each pair of tracked
|
centroid_x = int((obj['box'][0]+obj['box'][2]) / 2.0)
|
||||||
# centroids and new centroids, respectively -- our
|
centroid_y = int((obj['box'][1]+obj['box'][3]) / 2.0)
|
||||||
# goal will be to match each new centroid to an existing
|
obj['centroid'] = (centroid_x, centroid_y)
|
||||||
# object centroid
|
if tracker_id not in self.tracked_objects:
|
||||||
D = dist.cdist(current_centroids, new_centroids)
|
self.register(tracker_id, obj)
|
||||||
|
|
||||||
# in order to perform this matching we must (1) find the
|
|
||||||
# smallest value in each row and then (2) sort the row
|
|
||||||
# indexes based on their minimum values so that the row
|
|
||||||
# with the smallest value is at the *front* of the index
|
|
||||||
# list
|
|
||||||
rows = D.min(axis=1).argsort()
|
|
||||||
|
|
||||||
# next, we perform a similar process on the columns by
|
|
||||||
# finding the smallest value in each column and then
|
|
||||||
# sorting using the previously computed row index list
|
|
||||||
cols = D.argmin(axis=1)[rows]
|
|
||||||
|
|
||||||
# in order to determine if we need to update, register,
|
|
||||||
# or deregister an object we need to keep track of which
|
|
||||||
# of the rows and column indexes we have already examined
|
|
||||||
usedRows = set()
|
|
||||||
usedCols = set()
|
|
||||||
|
|
||||||
# loop over the combination of the (row, column) index
|
|
||||||
# tuples
|
|
||||||
for (row, col) in zip(rows, cols):
|
|
||||||
# if we have already examined either the row or
|
|
||||||
# column value before, ignore it
|
|
||||||
if row in usedRows or col in usedCols:
|
|
||||||
continue
|
|
||||||
|
|
||||||
# otherwise, grab the object ID for the current row,
|
|
||||||
# set its new centroid, and reset the disappeared
|
|
||||||
# counter
|
|
||||||
objectID = current_ids[row]
|
|
||||||
self.update(objectID, group[col])
|
|
||||||
|
|
||||||
# indicate that we have examined each of the row and
|
|
||||||
# column indexes, respectively
|
|
||||||
usedRows.add(row)
|
|
||||||
usedCols.add(col)
|
|
||||||
|
|
||||||
# compute the column index we have NOT yet examined
|
|
||||||
unusedRows = set(range(0, D.shape[0])).difference(usedRows)
|
|
||||||
unusedCols = set(range(0, D.shape[1])).difference(usedCols)
|
|
||||||
|
|
||||||
# in the event that the number of object centroids is
|
|
||||||
# equal or greater than the number of input centroids
|
|
||||||
# we need to check and see if some of these objects have
|
|
||||||
# potentially disappeared
|
|
||||||
if D.shape[0] >= D.shape[1]:
|
|
||||||
for row in unusedRows:
|
|
||||||
id = current_ids[row]
|
|
||||||
|
|
||||||
if self.disappeared[id] >= self.max_disappeared:
|
|
||||||
self.deregister(id)
|
|
||||||
else:
|
|
||||||
self.disappeared[id] += 1
|
|
||||||
# if the number of input centroids is greater
|
|
||||||
# than the number of existing object centroids we need to
|
|
||||||
# register each new input centroid as a trackable object
|
|
||||||
else:
|
else:
|
||||||
for col in unusedCols:
|
self.update(tracker_id, obj)
|
||||||
self.register(col, group[col])
|
|
||||||
|
252
frigate/sort.py
Normal file
252
frigate/sort.py
Normal file
@ -0,0 +1,252 @@
|
|||||||
|
"""
|
||||||
|
SORT: A Simple, Online and Realtime Tracker
|
||||||
|
Copyright (C) 2016-2020 Alex Bewley alex@bewley.ai
|
||||||
|
|
||||||
|
This program is free software: you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License
|
||||||
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
"""
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import os
|
||||||
|
import numpy as np
|
||||||
|
from skimage import io
|
||||||
|
|
||||||
|
import glob
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
from filterpy.kalman import KalmanFilter
|
||||||
|
|
||||||
|
np.random.seed(0)
|
||||||
|
|
||||||
|
|
||||||
|
def linear_assignment(cost_matrix):
|
||||||
|
try:
|
||||||
|
import lap
|
||||||
|
_, x, y = lap.lapjv(cost_matrix, extend_cost=True)
|
||||||
|
return np.array([[y[i],i] for i in x if i >= 0]) #
|
||||||
|
except ImportError:
|
||||||
|
from scipy.optimize import linear_sum_assignment
|
||||||
|
x, y = linear_sum_assignment(cost_matrix)
|
||||||
|
return np.array(list(zip(x, y)))
|
||||||
|
|
||||||
|
|
||||||
|
def iou_batch(bb_test, bb_gt):
|
||||||
|
"""
|
||||||
|
From SORT: Computes IUO between two bboxes in the form [l,t,w,h]
|
||||||
|
"""
|
||||||
|
bb_gt = np.expand_dims(bb_gt, 0)
|
||||||
|
bb_test = np.expand_dims(bb_test, 1)
|
||||||
|
|
||||||
|
xx1 = np.maximum(bb_test[..., 0], bb_gt[..., 0])
|
||||||
|
yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1])
|
||||||
|
xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2])
|
||||||
|
yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3])
|
||||||
|
w = np.maximum(0., xx2 - xx1)
|
||||||
|
h = np.maximum(0., yy2 - yy1)
|
||||||
|
wh = w * h
|
||||||
|
o = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1])
|
||||||
|
+ (bb_gt[..., 2] - bb_gt[..., 0]) * (bb_gt[..., 3] - bb_gt[..., 1]) - wh)
|
||||||
|
return(o)
|
||||||
|
|
||||||
|
|
||||||
|
def convert_bbox_to_z(bbox):
|
||||||
|
"""
|
||||||
|
Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form
|
||||||
|
[x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is
|
||||||
|
the aspect ratio
|
||||||
|
"""
|
||||||
|
w = bbox[2] - bbox[0]
|
||||||
|
h = bbox[3] - bbox[1]
|
||||||
|
x = bbox[0] + w/2.
|
||||||
|
y = bbox[1] + h/2.
|
||||||
|
s = w * h #scale is just area
|
||||||
|
r = w / float(h)
|
||||||
|
return np.array([x, y, s, r]).reshape((4, 1))
|
||||||
|
|
||||||
|
|
||||||
|
def convert_x_to_bbox(x,score=None):
|
||||||
|
"""
|
||||||
|
Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
|
||||||
|
[x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right
|
||||||
|
"""
|
||||||
|
w = np.sqrt(x[2] * x[3])
|
||||||
|
h = x[2] / w
|
||||||
|
if(score==None):
|
||||||
|
return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4))
|
||||||
|
else:
|
||||||
|
return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5))
|
||||||
|
|
||||||
|
|
||||||
|
class KalmanBoxTracker(object):
|
||||||
|
"""
|
||||||
|
This class represents the internal state of individual tracked objects observed as bbox.
|
||||||
|
"""
|
||||||
|
count = 0
|
||||||
|
def __init__(self,bbox):
|
||||||
|
"""
|
||||||
|
Initialises a tracker using initial bounding box.
|
||||||
|
"""
|
||||||
|
#define constant velocity model
|
||||||
|
self.kf = KalmanFilter(dim_x=7, dim_z=4)
|
||||||
|
self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0], [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]])
|
||||||
|
self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]])
|
||||||
|
|
||||||
|
self.kf.R[2:,2:] *= 10.
|
||||||
|
self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities
|
||||||
|
self.kf.P *= 10.
|
||||||
|
self.kf.Q[-1,-1] *= 0.01
|
||||||
|
self.kf.Q[4:,4:] *= 0.01
|
||||||
|
|
||||||
|
self.kf.x[:4] = convert_bbox_to_z(bbox)
|
||||||
|
self.time_since_update = 0
|
||||||
|
self.id = KalmanBoxTracker.count
|
||||||
|
KalmanBoxTracker.count += 1
|
||||||
|
self.history = []
|
||||||
|
self.hits = 0
|
||||||
|
self.hit_streak = 0
|
||||||
|
self.age = 0
|
||||||
|
self.original_id = bbox[5]
|
||||||
|
|
||||||
|
def update(self,bbox):
|
||||||
|
"""
|
||||||
|
Updates the state vector with observed bbox.
|
||||||
|
"""
|
||||||
|
self.time_since_update = 0
|
||||||
|
self.history = []
|
||||||
|
self.hits += 1
|
||||||
|
self.hit_streak += 1
|
||||||
|
self.kf.update(convert_bbox_to_z(bbox))
|
||||||
|
self.original_id = bbox[5]
|
||||||
|
|
||||||
|
def predict(self):
|
||||||
|
"""
|
||||||
|
Advances the state vector and returns the predicted bounding box estimate.
|
||||||
|
"""
|
||||||
|
if((self.kf.x[6]+self.kf.x[2])<=0):
|
||||||
|
self.kf.x[6] *= 0.0
|
||||||
|
self.kf.predict()
|
||||||
|
self.age += 1
|
||||||
|
if(self.time_since_update>0):
|
||||||
|
self.hit_streak = 0
|
||||||
|
self.time_since_update += 1
|
||||||
|
self.history.append(convert_x_to_bbox(self.kf.x))
|
||||||
|
return self.history[-1]
|
||||||
|
|
||||||
|
def get_state(self):
|
||||||
|
"""
|
||||||
|
Returns the current bounding box estimate.
|
||||||
|
"""
|
||||||
|
return convert_x_to_bbox(self.kf.x)
|
||||||
|
|
||||||
|
|
||||||
|
def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3):
|
||||||
|
"""
|
||||||
|
Assigns detections to tracked object (both represented as bounding boxes)
|
||||||
|
|
||||||
|
Returns 3 lists of matches, unmatched_detections and unmatched_trackers
|
||||||
|
"""
|
||||||
|
if(len(trackers)==0):
|
||||||
|
return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int)
|
||||||
|
|
||||||
|
iou_matrix = iou_batch(detections, trackers)
|
||||||
|
|
||||||
|
if min(iou_matrix.shape) > 0:
|
||||||
|
a = (iou_matrix > iou_threshold).astype(np.int32)
|
||||||
|
if a.sum(1).max() == 1 and a.sum(0).max() == 1:
|
||||||
|
matched_indices = np.stack(np.where(a), axis=1)
|
||||||
|
else:
|
||||||
|
matched_indices = linear_assignment(-iou_matrix)
|
||||||
|
else:
|
||||||
|
matched_indices = np.empty(shape=(0,2))
|
||||||
|
|
||||||
|
unmatched_detections = []
|
||||||
|
for d, det in enumerate(detections):
|
||||||
|
if(d not in matched_indices[:,0]):
|
||||||
|
unmatched_detections.append(d)
|
||||||
|
unmatched_trackers = []
|
||||||
|
for t, trk in enumerate(trackers):
|
||||||
|
if(t not in matched_indices[:,1]):
|
||||||
|
unmatched_trackers.append(t)
|
||||||
|
|
||||||
|
#filter out matched with low IOU
|
||||||
|
matches = []
|
||||||
|
for m in matched_indices:
|
||||||
|
if(iou_matrix[m[0], m[1]]<iou_threshold):
|
||||||
|
unmatched_detections.append(m[0])
|
||||||
|
unmatched_trackers.append(m[1])
|
||||||
|
else:
|
||||||
|
matches.append(m.reshape(1,2))
|
||||||
|
if(len(matches)==0):
|
||||||
|
matches = np.empty((0,2),dtype=int)
|
||||||
|
else:
|
||||||
|
matches = np.concatenate(matches,axis=0)
|
||||||
|
|
||||||
|
return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
|
||||||
|
|
||||||
|
|
||||||
|
class Sort(object):
|
||||||
|
def __init__(self, max_age=1, min_hits=3, iou_threshold=0.3):
|
||||||
|
"""
|
||||||
|
Sets key parameters for SORT
|
||||||
|
"""
|
||||||
|
self.max_age = max_age
|
||||||
|
self.min_hits = min_hits
|
||||||
|
self.iou_threshold = iou_threshold
|
||||||
|
self.trackers = []
|
||||||
|
self.frame_count = 0
|
||||||
|
|
||||||
|
def update(self, dets=np.empty((0, 6))):
|
||||||
|
"""
|
||||||
|
Params:
|
||||||
|
dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...]
|
||||||
|
Requires: this method must be called once for each frame even with empty detections (use np.empty((0, 5)) for frames without detections).
|
||||||
|
Returns the a similar array, where the last column is the object ID.
|
||||||
|
|
||||||
|
NOTE: The number of objects returned may differ from the number of detections provided.
|
||||||
|
"""
|
||||||
|
self.frame_count += 1
|
||||||
|
# get predicted locations from existing trackers.
|
||||||
|
trks = np.zeros((len(self.trackers), 5))
|
||||||
|
to_del = []
|
||||||
|
ret = []
|
||||||
|
for t, trk in enumerate(trks):
|
||||||
|
pos = self.trackers[t].predict()[0]
|
||||||
|
trk[:] = [pos[0], pos[1], pos[2], pos[3], 0]
|
||||||
|
if np.any(np.isnan(pos)):
|
||||||
|
to_del.append(t)
|
||||||
|
trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
|
||||||
|
for t in reversed(to_del):
|
||||||
|
self.trackers.pop(t)
|
||||||
|
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets,trks, self.iou_threshold)
|
||||||
|
|
||||||
|
# update matched trackers with assigned detections
|
||||||
|
for m in matched:
|
||||||
|
self.trackers[m[1]].update(dets[m[0], :])
|
||||||
|
|
||||||
|
# create and initialise new trackers for unmatched detections
|
||||||
|
for i in unmatched_dets:
|
||||||
|
trk = KalmanBoxTracker(dets[i,:])
|
||||||
|
self.trackers.append(trk)
|
||||||
|
i = len(self.trackers)
|
||||||
|
for trk in reversed(self.trackers):
|
||||||
|
d = trk.get_state()[0]
|
||||||
|
if (trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits):
|
||||||
|
ret.append(np.concatenate((d,[trk.id+1], [trk.original_id])).reshape(1,-1)) # +1 as MOT benchmark requires positive
|
||||||
|
i -= 1
|
||||||
|
# remove dead tracklet
|
||||||
|
if(trk.time_since_update > self.max_age):
|
||||||
|
self.trackers.pop(i)
|
||||||
|
if(len(ret)>0):
|
||||||
|
return np.concatenate(ret)
|
||||||
|
return np.empty((0,5))
|
@ -200,7 +200,10 @@ def track_camera(name, config, global_objects_config, frame_queue, frame_shape,
|
|||||||
motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
|
motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
|
||||||
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue)
|
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue)
|
||||||
|
|
||||||
object_tracker = ObjectTracker(10)
|
camera_tracker_config = config.get('tracker', {"min_hits": 1, "max_age": 5, "iou_threshold": 0.2})
|
||||||
|
object_tracker = ObjectTracker(camera_tracker_config["min_hits"],
|
||||||
|
camera_tracker_config["max_age"],
|
||||||
|
camera_tracker_config["iou_threshold"])
|
||||||
|
|
||||||
plasma_client = PlasmaManager()
|
plasma_client = PlasmaManager()
|
||||||
avg_wait = 0.0
|
avg_wait = 0.0
|
||||||
|
Loading…
Reference in New Issue
Block a user