Improve motion detection and region selection (#6741)

* refactor existing motion detector

* implement and use cnt bgsub

* pass fps to motion detector

* create a simplified motion detector

* lightning detection

* update default motion config

* lint imports

* use estimated boxes for regions

* use improved motion detector

* update test

* use a different strategy for clustering motion and object boxes

* increase alpha during calibration

* simplify object consolidation

* add some reasonable constraints to the estimated box

* adjust cluster boundary to 10%

* refactor

* add disabled debug code

* fix variable scope
This commit is contained in:
Blake Blackshear 2023-06-11 09:45:11 -04:00 committed by GitHub
parent 32569842d3
commit d81dd60fef
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 693 additions and 125 deletions

103
benchmark_motion.py Normal file
View File

@ -0,0 +1,103 @@
import datetime
import multiprocessing as mp
import os
from statistics import mean
import cv2
import numpy as np
from frigate.config import MotionConfig
from frigate.motion.frigate_motion import FrigateMotionDetector
from frigate.motion.improved_motion import ImprovedMotionDetector
# get info on the video
# cap = cv2.VideoCapture("debug/front_cam_2023_05_23_08_41__2023_05_23_08_43.mp4")
# cap = cv2.VideoCapture("debug/motion_test_clips/rain_1.mp4")
cap = cv2.VideoCapture("debug/motion_test_clips/ir_off.mp4")
# cap = cv2.VideoCapture("airport.mp4")
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
frame_shape = (height, width, 3)
# create the motion config
motion_config = MotionConfig()
motion_config.mask = np.zeros((height, width), np.uint8)
motion_config.mask[:] = 255
motion_config.improve_contrast = 1
motion_config.frame_alpha = 0.02
motion_config.threshold = 40
motion_config.contour_area = 15
save_images = True
# create motion detectors
frigate_motion_detector = FrigateMotionDetector(
frame_shape=frame_shape,
config=motion_config,
fps=fps,
improve_contrast=mp.Value("i", motion_config.improve_contrast),
threshold=mp.Value("i", motion_config.threshold),
contour_area=mp.Value("i", motion_config.contour_area),
)
frigate_motion_detector.save_images = save_images
improved_motion_detector = ImprovedMotionDetector(
frame_shape=frame_shape,
config=motion_config,
fps=fps,
improve_contrast=mp.Value("i", motion_config.improve_contrast),
threshold=mp.Value("i", motion_config.threshold),
contour_area=mp.Value("i", motion_config.contour_area),
)
improved_motion_detector.save_images = save_images
# read and process frames
frame_times = {"frigate": [], "improved": []}
ret, frame = cap.read()
frame_counter = 1
while ret:
yuv_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2YUV_I420)
start_frame = datetime.datetime.now().timestamp()
frigate_motion_detector.detect(yuv_frame)
frame_times["frigate"].append(datetime.datetime.now().timestamp() - start_frame)
start_frame = datetime.datetime.now().timestamp()
improved_motion_detector.detect(yuv_frame)
frame_times["improved"].append(datetime.datetime.now().timestamp() - start_frame)
frigate_frame = f"debug/frames/frigate-{frame_counter}.jpg"
improved_frame = f"debug/frames/improved-{frame_counter}.jpg"
if os.path.exists(frigate_frame) and os.path.exists(improved_frame):
image_row_1 = cv2.hconcat(
[
cv2.imread(frigate_frame),
cv2.imread(improved_frame),
]
)
image_row_2 = cv2.resize(
frame,
dsize=(
frigate_motion_detector.motion_frame_size[1] * 2,
frigate_motion_detector.motion_frame_size[0] * 2,
),
interpolation=cv2.INTER_LINEAR,
)
cv2.imwrite(
f"debug/frames/all-{frame_counter}.jpg",
cv2.vconcat([image_row_1, image_row_2]),
)
os.unlink(frigate_frame)
os.unlink(improved_frame)
frame_counter += 1
ret, frame = cap.read()
cap.release()
print("Frigate Motion Detector")
print(f"Average frame processing time: {mean(frame_times['frigate'])*1000:.2f}ms")
print("Improved Motion Detector")
print(f"Average frame processing time: {mean(frame_times['improved'])*1000:.2f}ms")

View File

@ -261,27 +261,29 @@ motion:
# Optional: The threshold passed to cv2.threshold to determine if a pixel is different enough to be counted as motion. (default: shown below)
# Increasing this value will make motion detection less sensitive and decreasing it will make motion detection more sensitive.
# The value should be between 1 and 255.
threshold: 25
# Optional: Minimum size in pixels in the resized motion image that counts as motion (default: 30)
threshold: 40
# Optional: The percentage of the image used to detect lightning or other substantial changes where motion detection
# needs to recalibrate. (default: shown below)
# Increasing this value will make motion detection more likely to consider lightning or ir mode changes as valid motion.
# Decreasing this value will make motion detection more likely to ignore large amounts of motion such as a person approaching
# a doorbell camera.
lightning_threshold: 0.8
# Optional: Minimum size in pixels in the resized motion image that counts as motion (default: shown below)
# Increasing this value will prevent smaller areas of motion from being detected. Decreasing will
# make motion detection more sensitive to smaller moving objects.
# As a rule of thumb:
# - 15 - high sensitivity
# - 30 - medium sensitivity
# - 50 - low sensitivity
contour_area: 30
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging the motion delta across multiple frames (default: shown below)
# Higher values mean the current frame impacts the delta a lot, and a single raindrop may register as motion.
# Too low and a fast moving person wont be detected as motion.
delta_alpha: 0.2
contour_area: 15
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging frames to determine the background (default: shown below)
# Higher values mean the current frame impacts the average a lot, and a new object will be averaged into the background faster.
# Low values will cause things like moving shadows to be detected as motion for longer.
# https://www.geeksforgeeks.org/background-subtraction-in-an-image-using-concept-of-running-average/
frame_alpha: 0.2
frame_alpha: 0.02
# Optional: Height of the resized motion frame (default: 50)
# This operates as an efficient blur alternative. Higher values will result in more granular motion detection at the expense
# of higher CPU usage. Lower values result in less CPU, but small changes may not register as motion.
# Higher values will result in more granular motion detection at the expense of higher CPU usage.
# Lower values result in less CPU, but small changes may not register as motion.
frame_height: 50
# Optional: motion mask
# NOTE: see docs for more detailed info on creating masks
@ -289,7 +291,7 @@ motion:
# Optional: improve contrast (default: shown below)
# Enables dynamic contrast improvement. This should help improve night detections at the cost of making motion detection more sensitive
# for daytime.
improve_contrast: False
improve_contrast: True
# Optional: Delay when updating camera motion through MQTT from ON -> OFF (default: shown below).
mqtt_off_delay: 30

View File

@ -189,15 +189,18 @@ class RecordConfig(FrigateBaseModel):
class MotionConfig(FrigateBaseModel):
threshold: int = Field(
default=25,
default=40,
title="Motion detection threshold (1-255).",
ge=1,
le=255,
)
improve_contrast: bool = Field(default=False, title="Improve Contrast")
contour_area: Optional[int] = Field(default=30, title="Contour Area")
lightning_threshold: float = Field(
default=0.8, title="Lightning detection threshold (0.3-1.0).", ge=0.3, le=1.0
)
improve_contrast: bool = Field(default=True, title="Improve Contrast")
contour_area: Optional[int] = Field(default=15, title="Contour Area")
delta_alpha: float = Field(default=0.2, title="Delta Alpha")
frame_alpha: float = Field(default=0.2, title="Frame Alpha")
frame_alpha: float = Field(default=0.02, title="Frame Alpha")
frame_height: Optional[int] = Field(default=50, title="Frame Height")
mask: Union[str, List[str]] = Field(
default="", title="Coordinates polygon for the motion mask."

View File

@ -0,0 +1,22 @@
from abc import ABC, abstractmethod
from typing import Tuple
from frigate.config import MotionConfig
class MotionDetector(ABC):
@abstractmethod
def __init__(
self,
frame_shape: Tuple[int, int, int],
config: MotionConfig,
fps: int,
improve_contrast,
threshold,
contour_area,
):
pass
@abstractmethod
def detect(self, frame):
pass

View File

@ -3,16 +3,18 @@ import imutils
import numpy as np
from frigate.config import MotionConfig
from frigate.motion import MotionDetector
class MotionDetector:
class FrigateMotionDetector(MotionDetector):
def __init__(
self,
frame_shape,
config: MotionConfig,
improve_contrast_enabled,
motion_threshold,
motion_contour_area,
fps: int,
improve_contrast,
threshold,
contour_area,
):
self.config = config
self.frame_shape = frame_shape
@ -32,9 +34,9 @@ class MotionDetector:
)
self.mask = np.where(resized_mask == [0])
self.save_images = False
self.improve_contrast = improve_contrast_enabled
self.threshold = motion_threshold
self.contour_area = motion_contour_area
self.improve_contrast = improve_contrast
self.threshold = threshold
self.contour_area = contour_area
def detect(self, frame):
motion_boxes = []
@ -130,18 +132,10 @@ class MotionDetector:
(0, 0, 255),
2,
)
# print("--------")
image_row_1 = cv2.hconcat(
[
cv2.cvtColor(frameDelta, cv2.COLOR_GRAY2BGR),
cv2.cvtColor(avg_delta_image, cv2.COLOR_GRAY2BGR),
]
cv2.imwrite(
f"debug/frames/frigate-{self.frame_counter}.jpg", thresh_dilated
)
image_row_2 = cv2.hconcat(
[cv2.cvtColor(thresh, cv2.COLOR_GRAY2BGR), thresh_dilated]
)
combined_image = cv2.vconcat([image_row_1, image_row_2])
cv2.imwrite(f"motion/motion-{self.frame_counter}.jpg", combined_image)
if len(motion_boxes) > 0:
self.motion_frame_count += 1

View File

@ -0,0 +1,143 @@
import cv2
import imutils
import numpy as np
from frigate.config import MotionConfig
from frigate.motion import MotionDetector
class ImprovedMotionDetector(MotionDetector):
def __init__(
self,
frame_shape,
config: MotionConfig,
fps: int,
improve_contrast,
threshold,
contour_area,
):
self.config = config
self.frame_shape = frame_shape
self.resize_factor = frame_shape[0] / config.frame_height
self.motion_frame_size = (
config.frame_height,
config.frame_height * frame_shape[1] // frame_shape[0],
)
self.avg_frame = np.zeros(self.motion_frame_size, np.float32)
self.avg_delta = np.zeros(self.motion_frame_size, np.float32)
self.motion_frame_count = 0
self.frame_counter = 0
resized_mask = cv2.resize(
config.mask,
dsize=(self.motion_frame_size[1], self.motion_frame_size[0]),
interpolation=cv2.INTER_LINEAR,
)
self.mask = np.where(resized_mask == [0])
self.save_images = False
self.calibrating = True
self.improve_contrast = improve_contrast
self.threshold = threshold
self.contour_area = contour_area
def detect(self, frame):
motion_boxes = []
gray = frame[0 : self.frame_shape[0], 0 : self.frame_shape[1]]
# resize frame
resized_frame = cv2.resize(
gray,
dsize=(self.motion_frame_size[1], self.motion_frame_size[0]),
interpolation=cv2.INTER_LINEAR,
)
resized_frame = cv2.GaussianBlur(resized_frame, (3, 3), cv2.BORDER_DEFAULT)
# Improve contrast
if self.improve_contrast.value:
resized_frame = cv2.equalizeHist(resized_frame)
# mask frame
resized_frame[self.mask] = [255]
if self.save_images or self.calibrating:
self.frame_counter += 1
# compare to average
frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame))
# compute the threshold image for the current frame
thresh = cv2.threshold(
frameDelta, self.threshold.value, 255, cv2.THRESH_BINARY
)[1]
# dilate the thresholded image to fill in holes, then find contours
# on thresholded image
thresh_dilated = cv2.dilate(thresh, None, iterations=1)
cnts = cv2.findContours(
thresh_dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
cnts = imutils.grab_contours(cnts)
# loop over the contours
total_contour_area = 0
for c in cnts:
# if the contour is big enough, count it as motion
contour_area = cv2.contourArea(c)
total_contour_area += contour_area
if contour_area > self.contour_area.value:
x, y, w, h = cv2.boundingRect(c)
motion_boxes.append(
(
int(x * self.resize_factor),
int(y * self.resize_factor),
int((x + w) * self.resize_factor),
int((y + h) * self.resize_factor),
)
)
pct_motion = total_contour_area / (
self.motion_frame_size[0] * self.motion_frame_size[1]
)
# once the motion drops to less than 1% for the first time, assume its calibrated
if pct_motion < 0.01:
self.calibrating = False
# if calibrating or the motion contours are > 80% of the image area (lightning, ir, ptz) recalibrate
if self.calibrating or pct_motion > self.config.lightning_threshold:
motion_boxes = []
self.calibrating = True
if self.save_images:
thresh_dilated = cv2.cvtColor(thresh_dilated, cv2.COLOR_GRAY2BGR)
for b in motion_boxes:
cv2.rectangle(
thresh_dilated,
(int(b[0] / self.resize_factor), int(b[1] / self.resize_factor)),
(int(b[2] / self.resize_factor), int(b[3] / self.resize_factor)),
(0, 0, 255),
2,
)
cv2.imwrite(
f"debug/frames/improved-{self.frame_counter}.jpg", thresh_dilated
)
if len(motion_boxes) > 0:
self.motion_frame_count += 1
if self.motion_frame_count >= 10:
# only average in the current frame if the difference persists for a bit
cv2.accumulateWeighted(
resized_frame,
self.avg_frame,
0.2 if self.calibrating else self.config.frame_alpha,
)
else:
# when no motion, just keep averaging the frames together
cv2.accumulateWeighted(
resized_frame,
self.avg_frame,
0.2 if self.calibrating else self.config.frame_alpha,
)
self.motion_frame_count = 0
return motion_boxes

View File

@ -758,7 +758,7 @@ class TestConfig(unittest.TestCase):
assert config == frigate_config.dict(exclude_unset=True)
runtime_config = frigate_config.runtime_config()
assert round(runtime_config.cameras["back"].motion.contour_area) == 30
assert round(runtime_config.cameras["back"].motion.contour_area) == 15
def test_merge_labelmap(self):
config = {

178
frigate/test/test_video.py Normal file
View File

@ -0,0 +1,178 @@
import unittest
import cv2
import numpy as np
from norfair.drawing.color import Palette
from norfair.drawing.drawer import Drawer
from frigate.video import (
get_cluster_boundary,
get_cluster_candidates,
get_cluster_region,
)
def draw_box(frame, box, color=(255, 0, 0), thickness=2):
cv2.rectangle(
frame,
(box[0], box[1]),
(box[2], box[3]),
color,
thickness,
)
def save_clusters_image(name, boxes, candidates, regions=[]):
canvas = np.zeros((1000, 2000, 3), np.uint8)
for cluster in candidates:
color = Palette.choose_color(np.random.rand())
for b in cluster:
box = boxes[b]
draw_box(canvas, box, color, 2)
# bottom right
text_anchor = (
box[2],
box[3],
)
canvas = Drawer.text(
canvas,
str(b),
position=text_anchor,
size=None,
color=(255, 255, 255),
thickness=None,
)
for r in regions:
draw_box(canvas, r, (0, 255, 0), 2)
cv2.imwrite(
f"debug/frames/{name}.jpg",
canvas,
)
def save_cluster_boundary_image(name, boxes, bounding_boxes):
canvas = np.zeros((1000, 2000, 3), np.uint8)
color = Palette.choose_color(np.random.rand())
for box in boxes:
draw_box(canvas, box, color, 2)
for bound in bounding_boxes:
draw_box(canvas, bound, (0, 255, 0), 2)
cv2.imwrite(
f"debug/frames/{name}.jpg",
canvas,
)
class TestConfig(unittest.TestCase):
def setUp(self):
self.frame_shape = (1000, 2000)
self.min_region_size = 160
def test_cluster_candidates(self):
boxes = [(100, 100, 200, 200), (202, 150, 252, 200), (900, 900, 950, 950)]
cluster_candidates = get_cluster_candidates(
self.frame_shape, self.min_region_size, boxes
)
# save_clusters_image("cluster_candidates", boxes, cluster_candidates)
assert len(cluster_candidates) == 2
def test_cluster_boundary(self):
boxes = [(100, 100, 200, 200), (215, 215, 325, 325)]
boundary_boxes = [
get_cluster_boundary(box, self.min_region_size) for box in boxes
]
# save_cluster_boundary_image("bound", boxes, boundary_boxes)
assert len(boundary_boxes) == 2
def test_cluster_regions(self):
boxes = [(100, 100, 200, 200), (202, 150, 252, 200), (900, 900, 950, 950)]
cluster_candidates = get_cluster_candidates(
self.frame_shape, self.min_region_size, boxes
)
regions = [
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
for candidate in cluster_candidates
]
# save_clusters_image("regions", boxes, cluster_candidates, regions)
assert len(regions) == 2
def test_box_too_small_for_cluster(self):
boxes = [(100, 100, 600, 600), (655, 100, 700, 145)]
cluster_candidates = get_cluster_candidates(
self.frame_shape, self.min_region_size, boxes
)
regions = [
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
for candidate in cluster_candidates
]
save_clusters_image("too_small", boxes, cluster_candidates, regions)
assert len(cluster_candidates) == 2
assert len(regions) == 2
def test_redundant_clusters(self):
boxes = [(100, 100, 200, 200), (305, 305, 415, 415)]
cluster_candidates = get_cluster_candidates(
self.frame_shape, self.min_region_size, boxes
)
regions = [
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
for candidate in cluster_candidates
]
# save_clusters_image("redundant", boxes, cluster_candidates, regions)
assert len(cluster_candidates) == 2
assert all([len(c) == 1 for c in cluster_candidates])
assert len(regions) == 2
def test_combine_boxes(self):
boxes = [
(460, 0, 561, 144),
(565, 0, 586, 71),
]
# boundary_boxes = [get_cluster_boundary(box) for box in boxes]
# save_cluster_boundary_image("combine_bound", boxes, boundary_boxes)
cluster_candidates = get_cluster_candidates(
self.frame_shape, self.min_region_size, boxes
)
regions = [
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
for candidate in cluster_candidates
]
# save_clusters_image("combine", boxes, cluster_candidates, regions)
assert len(regions) == 1
def test_dont_combine_boxes(self):
boxes = [(460, 0, 532, 129), (586, 0, 606, 46)]
# boundary_boxes = [get_cluster_boundary(box) for box in boxes]
# save_cluster_boundary_image("dont_combine_bound", boxes, boundary_boxes)
cluster_candidates = get_cluster_candidates(
self.frame_shape, self.min_region_size, boxes
)
regions = [
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
for candidate in cluster_candidates
]
# save_clusters_image("dont_combine", boxes, cluster_candidates, regions)
assert len(regions) == 2

View File

@ -231,16 +231,32 @@ class NorfairTracker(ObjectTracker):
# update or create new tracks
active_ids = []
for t in tracked_objects:
estimate = tuple(t.estimate.flatten().astype(int))
# keep the estimate within the bounds of the image
estimate = (
max(0, estimate[0]),
max(0, estimate[1]),
min(self.detect_config.width - 1, estimate[2]),
min(self.detect_config.height - 1, estimate[3]),
)
obj = {
**t.last_detection.data,
"estimate": estimate,
}
active_ids.append(t.global_id)
if t.global_id not in self.track_id_map:
self.register(t.global_id, t.last_detection.data)
self.register(t.global_id, obj)
# if there wasn't a detection in this frame, increment disappeared
elif t.last_detection.data["frame_time"] != frame_time:
id = self.track_id_map[t.global_id]
self.disappeared[id] += 1
# sometimes the estimate gets way off
# only update if the upper left corner is actually upper left
if estimate[0] < estimate[2] and estimate[1] < estimate[3]:
self.tracked_objects[id]["estimate"] = obj["estimate"]
# else update it
else:
self.update(t.global_id, t.last_detection.data)
self.update(t.global_id, obj)
# clear expired tracks
expired_ids = [k for k in self.track_id_map.keys() if k not in active_ids]

View File

@ -1,9 +1,9 @@
import datetime
import logging
import math
import multiprocessing as mp
import os
import queue
import random
import signal
import subprocess as sp
import threading
@ -18,6 +18,7 @@ from frigate.config import CameraConfig, DetectConfig, PixelFormatEnum
from frigate.const import CACHE_DIR
from frigate.log import LogPipe
from frigate.motion import MotionDetector
from frigate.motion.improved_motion import ImprovedMotionDetector
from frigate.object_detection import RemoteObjectDetector
from frigate.track import ObjectTracker
from frigate.track.norfair_tracker import NorfairTracker
@ -27,7 +28,7 @@ from frigate.util import (
SharedMemoryFrameManager,
area,
calculate_region,
clipped,
draw_box_with_label,
intersection,
intersection_over_union,
listen,
@ -462,9 +463,10 @@ def track_camera(
objects_to_track = config.objects.track
object_filters = config.objects.filters
motion_detector = MotionDetector(
motion_detector = ImprovedMotionDetector(
frame_shape,
config.motion,
config.detect.fps,
improve_contrast_enabled,
motion_threshold,
motion_contour_area,
@ -505,6 +507,13 @@ def box_overlaps(b1, b2):
return True
def box_inside(b1, b2):
# check if b2 is inside b1
if b2[0] >= b1[0] and b2[1] >= b1[1] and b2[2] <= b1[2] and b2[3] <= b1[3]:
return True
return False
def reduce_boxes(boxes, iou_threshold=0.0):
clusters = []
@ -575,6 +584,91 @@ def detect(
return detections
def get_cluster_boundary(box, min_region):
# compute the max region size for the current box (box is 10% of region)
box_width = box[2] - box[0]
box_height = box[3] - box[1]
max_region_area = abs(box_width * box_height) / 0.1
max_region_size = max(min_region, int(math.sqrt(max_region_area)))
centroid = (box_width / 2 + box[0], box_height / 2 + box[1])
max_x_dist = int(max_region_size - box_width / 2 * 1.1)
max_y_dist = int(max_region_size - box_height / 2 * 1.1)
return [
int(centroid[0] - max_x_dist),
int(centroid[1] - max_y_dist),
int(centroid[0] + max_x_dist),
int(centroid[1] + max_y_dist),
]
def get_cluster_candidates(frame_shape, min_region, boxes):
# and create a cluster of other boxes using it's max region size
# only include boxes where the region is an appropriate(except the region could possibly be smaller?)
# size in the cluster. in order to be in the cluster, the furthest corner needs to be within x,y offset
# determined by the max_region size minus half the box + 20%
# TODO: see if we can do this with numpy
cluster_candidates = []
used_boxes = []
# loop over each box
for current_index, b in enumerate(boxes):
if current_index in used_boxes:
continue
cluster = [current_index]
used_boxes.append(current_index)
cluster_boundary = get_cluster_boundary(b, min_region)
# find all other boxes that fit inside the boundary
for compare_index, compare_box in enumerate(boxes):
if compare_index in used_boxes:
continue
# if the box is not inside the potential cluster area, cluster them
if not box_inside(cluster_boundary, compare_box):
continue
# get the region if you were to add this box to the cluster
potential_cluster = cluster + [compare_index]
cluster_region = get_cluster_region(
frame_shape, min_region, potential_cluster, boxes
)
# if region could be smaller and either box would be too small
# for the resulting region, dont cluster
should_cluster = True
if (cluster_region[2] - cluster_region[0]) > min_region:
for b in potential_cluster:
box = boxes[b]
# boxes should be more than 5% of the area of the region
if area(box) / area(cluster_region) < 0.05:
should_cluster = False
break
if should_cluster:
cluster.append(compare_index)
used_boxes.append(compare_index)
cluster_candidates.append(cluster)
# return the unique clusters only
unique = {tuple(sorted(c)) for c in cluster_candidates}
return [list(tup) for tup in unique]
def get_cluster_region(frame_shape, min_region, cluster, boxes):
min_x = frame_shape[1]
min_y = frame_shape[0]
max_x = 0
max_y = 0
for b in cluster:
min_x = min(boxes[b][0], min_x)
min_y = min(boxes[b][1], min_y)
max_x = max(boxes[b][2], max_x)
max_y = max(boxes[b][3], max_y)
return calculate_region(
frame_shape, min_x, min_y, max_x, max_y, min_region, multiplier=1.2
)
def process_frames(
camera_name: str,
frame_queue: mp.Queue,
@ -603,6 +697,8 @@ def process_frames(
startup_scan_counter = 0
region_min_size = int(max(model_config.height, model_config.width) / 2)
while not stop_event.is_set():
if exit_on_empty and frame_queue.empty():
logger.info("Exiting track_objects...")
@ -654,35 +750,22 @@ def process_frames(
# get tracked object boxes that aren't stationary
tracked_object_boxes = [
obj["box"]
obj["estimate"]
for obj in object_tracker.tracked_objects.values()
if obj["id"] not in stationary_object_ids
]
# combine motion boxes with known locations of existing objects
combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes)
combined_boxes = motion_boxes + tracked_object_boxes
region_min_size = max(model_config.height, model_config.width)
# compute regions
regions = [
calculate_region(
frame_shape,
a[0],
a[1],
a[2],
a[3],
region_min_size,
multiplier=random.uniform(1.2, 1.5),
)
for a in combined_boxes
]
cluster_candidates = get_cluster_candidates(
frame_shape, region_min_size, combined_boxes
)
# consolidate regions with heavy overlap
regions = [
calculate_region(
frame_shape, a[0], a[1], a[2], a[3], region_min_size, multiplier=1.0
get_cluster_region(
frame_shape, region_min_size, candidate, combined_boxes
)
for a in reduce_boxes(regions, 0.4)
for candidate in cluster_candidates
]
# if starting up, get the next startup scan region
@ -733,74 +816,38 @@ def process_frames(
)
#########
# merge objects, check for clipped objects and look again up to 4 times
# merge objects
#########
refining = len(regions) > 0
refine_count = 0
while refining and refine_count < 4:
refining = False
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
selected_objects = []
for group in detected_object_groups.values():
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
# o[2] is the box of the object: xmin, ymin, xmax, ymax
# apply max/min to ensure values do not exceed the known frame size
boxes = [
(
o[2][0],
o[2][1],
o[2][2] - o[2][0],
o[2][3] - o[2][1],
)
for o in group
]
confidences = [o[1] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
selected_objects = []
for group in detected_object_groups.values():
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
# o[2] is the box of the object: xmin, ymin, xmax, ymax
# apply max/min to ensure values do not exceed the known frame size
boxes = [
(
o[2][0],
o[2][1],
o[2][2] - o[2][0],
o[2][3] - o[2][1],
)
for o in group
]
confidences = [o[1] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# add objects
for index in idxs:
index = index if isinstance(index, np.int32) else index[0]
obj = group[index]
selected_objects.append(obj)
for index in idxs:
index = index if isinstance(index, np.int32) else index[0]
obj = group[index]
if clipped(obj, frame_shape):
box = obj[2]
# calculate a new region that will hopefully get the entire object
region = calculate_region(
frame_shape,
box[0],
box[1],
box[2],
box[3],
region_min_size,
)
regions.append(region)
selected_objects.extend(
detect(
detect_config,
object_detector,
frame,
model_config,
region,
objects_to_track,
object_filters,
)
)
refining = True
else:
selected_objects.append(obj)
# set the detections list to only include top, complete objects
# and new detections
detections = selected_objects
if refining:
refine_count += 1
# set the detections list to only include top objects
detections = selected_objects
## drop detections that overlap too much
consolidated_detections = []
@ -848,7 +895,7 @@ def process_frames(
else:
object_tracker.update_frame_times(frame_time)
# debug tracking by writing frames
# debug object tracking
if False:
bgr_frame = cv2.cvtColor(
frame,
@ -858,7 +905,67 @@ def process_frames(
cv2.imwrite(
f"debug/frames/track-{'{:.6f}'.format(frame_time)}.jpg", bgr_frame
)
# debug
if False:
bgr_frame = cv2.cvtColor(
frame,
cv2.COLOR_YUV2BGR_I420,
)
for m_box in motion_boxes:
cv2.rectangle(
bgr_frame,
(m_box[0], m_box[1]),
(m_box[2], m_box[3]),
(0, 0, 255),
2,
)
for b in tracked_object_boxes:
cv2.rectangle(
bgr_frame,
(b[0], b[1]),
(b[2], b[3]),
(255, 0, 0),
2,
)
for obj in object_tracker.tracked_objects.values():
if obj["frame_time"] == frame_time:
thickness = 2
color = model_config.colormap[obj["label"]]
else:
thickness = 1
color = (255, 0, 0)
# draw the bounding boxes on the frame
box = obj["box"]
draw_box_with_label(
bgr_frame,
box[0],
box[1],
box[2],
box[3],
obj["label"],
obj["id"],
thickness=thickness,
color=color,
)
for region in regions:
cv2.rectangle(
bgr_frame,
(region[0], region[1]),
(region[2], region[3]),
(0, 255, 0),
2,
)
cv2.imwrite(
f"debug/frames/{camera_name}-{'{:.6f}'.format(frame_time)}.jpg",
bgr_frame,
)
# add to the queue if not full
if detected_objects_queue.full():
frame_manager.delete(f"{camera_name}{frame_time}")