mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	Improve motion detection and region selection (#6741)
* refactor existing motion detector * implement and use cnt bgsub * pass fps to motion detector * create a simplified motion detector * lightning detection * update default motion config * lint imports * use estimated boxes for regions * use improved motion detector * update test * use a different strategy for clustering motion and object boxes * increase alpha during calibration * simplify object consolidation * add some reasonable constraints to the estimated box * adjust cluster boundary to 10% * refactor * add disabled debug code * fix variable scope
This commit is contained in:
		
							parent
							
								
									32569842d3
								
							
						
					
					
						commit
						d81dd60fef
					
				
							
								
								
									
										103
									
								
								benchmark_motion.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										103
									
								
								benchmark_motion.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,103 @@ | ||||
| import datetime | ||||
| import multiprocessing as mp | ||||
| import os | ||||
| from statistics import mean | ||||
| 
 | ||||
| import cv2 | ||||
| import numpy as np | ||||
| 
 | ||||
| from frigate.config import MotionConfig | ||||
| from frigate.motion.frigate_motion import FrigateMotionDetector | ||||
| from frigate.motion.improved_motion import ImprovedMotionDetector | ||||
| 
 | ||||
| # get info on the video | ||||
| # cap = cv2.VideoCapture("debug/front_cam_2023_05_23_08_41__2023_05_23_08_43.mp4") | ||||
| # cap = cv2.VideoCapture("debug/motion_test_clips/rain_1.mp4") | ||||
| cap = cv2.VideoCapture("debug/motion_test_clips/ir_off.mp4") | ||||
| # cap = cv2.VideoCapture("airport.mp4") | ||||
| width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | ||||
| height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | ||||
| fps = cap.get(cv2.CAP_PROP_FPS) | ||||
| frame_shape = (height, width, 3) | ||||
| 
 | ||||
| # create the motion config | ||||
| motion_config = MotionConfig() | ||||
| motion_config.mask = np.zeros((height, width), np.uint8) | ||||
| motion_config.mask[:] = 255 | ||||
| motion_config.improve_contrast = 1 | ||||
| motion_config.frame_alpha = 0.02 | ||||
| motion_config.threshold = 40 | ||||
| motion_config.contour_area = 15 | ||||
| save_images = True | ||||
| 
 | ||||
| # create motion detectors | ||||
| frigate_motion_detector = FrigateMotionDetector( | ||||
|     frame_shape=frame_shape, | ||||
|     config=motion_config, | ||||
|     fps=fps, | ||||
|     improve_contrast=mp.Value("i", motion_config.improve_contrast), | ||||
|     threshold=mp.Value("i", motion_config.threshold), | ||||
|     contour_area=mp.Value("i", motion_config.contour_area), | ||||
| ) | ||||
| frigate_motion_detector.save_images = save_images | ||||
| 
 | ||||
| improved_motion_detector = ImprovedMotionDetector( | ||||
|     frame_shape=frame_shape, | ||||
|     config=motion_config, | ||||
|     fps=fps, | ||||
|     improve_contrast=mp.Value("i", motion_config.improve_contrast), | ||||
|     threshold=mp.Value("i", motion_config.threshold), | ||||
|     contour_area=mp.Value("i", motion_config.contour_area), | ||||
| ) | ||||
| improved_motion_detector.save_images = save_images | ||||
| 
 | ||||
| # read and process frames | ||||
| frame_times = {"frigate": [], "improved": []} | ||||
| ret, frame = cap.read() | ||||
| frame_counter = 1 | ||||
| while ret: | ||||
|     yuv_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2YUV_I420) | ||||
| 
 | ||||
|     start_frame = datetime.datetime.now().timestamp() | ||||
|     frigate_motion_detector.detect(yuv_frame) | ||||
|     frame_times["frigate"].append(datetime.datetime.now().timestamp() - start_frame) | ||||
| 
 | ||||
|     start_frame = datetime.datetime.now().timestamp() | ||||
|     improved_motion_detector.detect(yuv_frame) | ||||
|     frame_times["improved"].append(datetime.datetime.now().timestamp() - start_frame) | ||||
| 
 | ||||
|     frigate_frame = f"debug/frames/frigate-{frame_counter}.jpg" | ||||
|     improved_frame = f"debug/frames/improved-{frame_counter}.jpg" | ||||
|     if os.path.exists(frigate_frame) and os.path.exists(improved_frame): | ||||
|         image_row_1 = cv2.hconcat( | ||||
|             [ | ||||
|                 cv2.imread(frigate_frame), | ||||
|                 cv2.imread(improved_frame), | ||||
|             ] | ||||
|         ) | ||||
| 
 | ||||
|         image_row_2 = cv2.resize( | ||||
|             frame, | ||||
|             dsize=( | ||||
|                 frigate_motion_detector.motion_frame_size[1] * 2, | ||||
|                 frigate_motion_detector.motion_frame_size[0] * 2, | ||||
|             ), | ||||
|             interpolation=cv2.INTER_LINEAR, | ||||
|         ) | ||||
| 
 | ||||
|         cv2.imwrite( | ||||
|             f"debug/frames/all-{frame_counter}.jpg", | ||||
|             cv2.vconcat([image_row_1, image_row_2]), | ||||
|         ) | ||||
|         os.unlink(frigate_frame) | ||||
|         os.unlink(improved_frame) | ||||
|     frame_counter += 1 | ||||
| 
 | ||||
|     ret, frame = cap.read() | ||||
| 
 | ||||
| cap.release() | ||||
| 
 | ||||
| print("Frigate Motion Detector") | ||||
| print(f"Average frame processing time: {mean(frame_times['frigate'])*1000:.2f}ms") | ||||
| print("Improved Motion Detector") | ||||
| print(f"Average frame processing time: {mean(frame_times['improved'])*1000:.2f}ms") | ||||
| @ -261,27 +261,29 @@ motion: | ||||
|   # Optional: The threshold passed to cv2.threshold to determine if a pixel is different enough to be counted as motion. (default: shown below) | ||||
|   # Increasing this value will make motion detection less sensitive and decreasing it will make motion detection more sensitive. | ||||
|   # The value should be between 1 and 255. | ||||
|   threshold: 25 | ||||
|   # Optional: Minimum size in pixels in the resized motion image that counts as motion (default: 30) | ||||
|   threshold: 40 | ||||
|   # Optional: The percentage of the image used to detect lightning or other substantial changes where motion detection | ||||
|   #           needs to recalibrate. (default: shown below) | ||||
|   # Increasing this value will make motion detection more likely to consider lightning or ir mode changes as valid motion. | ||||
|   # Decreasing this value will make motion detection more likely to ignore large amounts of motion such as a person approaching | ||||
|   # a doorbell camera. | ||||
|   lightning_threshold: 0.8 | ||||
|   # Optional: Minimum size in pixels in the resized motion image that counts as motion (default: shown below) | ||||
|   # Increasing this value will prevent smaller areas of motion from being detected. Decreasing will | ||||
|   # make motion detection more sensitive to smaller moving objects. | ||||
|   # As a rule of thumb: | ||||
|   #  - 15 - high sensitivity | ||||
|   #  - 30 - medium sensitivity | ||||
|   #  - 50 - low sensitivity | ||||
|   contour_area: 30 | ||||
|   # Optional: Alpha value passed to cv2.accumulateWeighted when averaging the motion delta across multiple frames (default: shown below) | ||||
|   # Higher values mean the current frame impacts the delta a lot, and a single raindrop may register as motion. | ||||
|   # Too low and a fast moving person wont be detected as motion. | ||||
|   delta_alpha: 0.2 | ||||
|   contour_area: 15 | ||||
|   # Optional: Alpha value passed to cv2.accumulateWeighted when averaging frames to determine the background (default: shown below) | ||||
|   # Higher values mean the current frame impacts the average a lot, and a new object will be averaged into the background faster. | ||||
|   # Low values will cause things like moving shadows to be detected as motion for longer. | ||||
|   # https://www.geeksforgeeks.org/background-subtraction-in-an-image-using-concept-of-running-average/ | ||||
|   frame_alpha: 0.2 | ||||
|   frame_alpha: 0.02 | ||||
|   # Optional: Height of the resized motion frame  (default: 50) | ||||
|   # This operates as an efficient blur alternative. Higher values will result in more granular motion detection at the expense | ||||
|   # of higher CPU usage. Lower values result in less CPU, but small changes may not register as motion. | ||||
|   # Higher values will result in more granular motion detection at the expense of higher CPU usage. | ||||
|   # Lower values result in less CPU, but small changes may not register as motion. | ||||
|   frame_height: 50 | ||||
|   # Optional: motion mask | ||||
|   # NOTE: see docs for more detailed info on creating masks | ||||
| @ -289,7 +291,7 @@ motion: | ||||
|   # Optional: improve contrast (default: shown below) | ||||
|   # Enables dynamic contrast improvement. This should help improve night detections at the cost of making motion detection more sensitive | ||||
|   # for daytime. | ||||
|   improve_contrast: False | ||||
|   improve_contrast: True | ||||
|   # Optional: Delay when updating camera motion through MQTT from ON -> OFF (default: shown below). | ||||
|   mqtt_off_delay: 30 | ||||
| 
 | ||||
|  | ||||
| @ -189,15 +189,18 @@ class RecordConfig(FrigateBaseModel): | ||||
| 
 | ||||
| class MotionConfig(FrigateBaseModel): | ||||
|     threshold: int = Field( | ||||
|         default=25, | ||||
|         default=40, | ||||
|         title="Motion detection threshold (1-255).", | ||||
|         ge=1, | ||||
|         le=255, | ||||
|     ) | ||||
|     improve_contrast: bool = Field(default=False, title="Improve Contrast") | ||||
|     contour_area: Optional[int] = Field(default=30, title="Contour Area") | ||||
|     lightning_threshold: float = Field( | ||||
|         default=0.8, title="Lightning detection threshold (0.3-1.0).", ge=0.3, le=1.0 | ||||
|     ) | ||||
|     improve_contrast: bool = Field(default=True, title="Improve Contrast") | ||||
|     contour_area: Optional[int] = Field(default=15, title="Contour Area") | ||||
|     delta_alpha: float = Field(default=0.2, title="Delta Alpha") | ||||
|     frame_alpha: float = Field(default=0.2, title="Frame Alpha") | ||||
|     frame_alpha: float = Field(default=0.02, title="Frame Alpha") | ||||
|     frame_height: Optional[int] = Field(default=50, title="Frame Height") | ||||
|     mask: Union[str, List[str]] = Field( | ||||
|         default="", title="Coordinates polygon for the motion mask." | ||||
|  | ||||
							
								
								
									
										22
									
								
								frigate/motion/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										22
									
								
								frigate/motion/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,22 @@ | ||||
| from abc import ABC, abstractmethod | ||||
| from typing import Tuple | ||||
| 
 | ||||
| from frigate.config import MotionConfig | ||||
| 
 | ||||
| 
 | ||||
| class MotionDetector(ABC): | ||||
|     @abstractmethod | ||||
|     def __init__( | ||||
|         self, | ||||
|         frame_shape: Tuple[int, int, int], | ||||
|         config: MotionConfig, | ||||
|         fps: int, | ||||
|         improve_contrast, | ||||
|         threshold, | ||||
|         contour_area, | ||||
|     ): | ||||
|         pass | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def detect(self, frame): | ||||
|         pass | ||||
| @ -3,16 +3,18 @@ import imutils | ||||
| import numpy as np | ||||
| 
 | ||||
| from frigate.config import MotionConfig | ||||
| from frigate.motion import MotionDetector | ||||
| 
 | ||||
| 
 | ||||
| class MotionDetector: | ||||
| class FrigateMotionDetector(MotionDetector): | ||||
|     def __init__( | ||||
|         self, | ||||
|         frame_shape, | ||||
|         config: MotionConfig, | ||||
|         improve_contrast_enabled, | ||||
|         motion_threshold, | ||||
|         motion_contour_area, | ||||
|         fps: int, | ||||
|         improve_contrast, | ||||
|         threshold, | ||||
|         contour_area, | ||||
|     ): | ||||
|         self.config = config | ||||
|         self.frame_shape = frame_shape | ||||
| @ -32,9 +34,9 @@ class MotionDetector: | ||||
|         ) | ||||
|         self.mask = np.where(resized_mask == [0]) | ||||
|         self.save_images = False | ||||
|         self.improve_contrast = improve_contrast_enabled | ||||
|         self.threshold = motion_threshold | ||||
|         self.contour_area = motion_contour_area | ||||
|         self.improve_contrast = improve_contrast | ||||
|         self.threshold = threshold | ||||
|         self.contour_area = contour_area | ||||
| 
 | ||||
|     def detect(self, frame): | ||||
|         motion_boxes = [] | ||||
| @ -130,18 +132,10 @@ class MotionDetector: | ||||
|                             (0, 0, 255), | ||||
|                             2, | ||||
|                         ) | ||||
|                 # print("--------") | ||||
|                 image_row_1 = cv2.hconcat( | ||||
|                     [ | ||||
|                         cv2.cvtColor(frameDelta, cv2.COLOR_GRAY2BGR), | ||||
|                         cv2.cvtColor(avg_delta_image, cv2.COLOR_GRAY2BGR), | ||||
|                     ] | ||||
| 
 | ||||
|                 cv2.imwrite( | ||||
|                     f"debug/frames/frigate-{self.frame_counter}.jpg", thresh_dilated | ||||
|                 ) | ||||
|                 image_row_2 = cv2.hconcat( | ||||
|                     [cv2.cvtColor(thresh, cv2.COLOR_GRAY2BGR), thresh_dilated] | ||||
|                 ) | ||||
|                 combined_image = cv2.vconcat([image_row_1, image_row_2]) | ||||
|                 cv2.imwrite(f"motion/motion-{self.frame_counter}.jpg", combined_image) | ||||
| 
 | ||||
|         if len(motion_boxes) > 0: | ||||
|             self.motion_frame_count += 1 | ||||
							
								
								
									
										143
									
								
								frigate/motion/improved_motion.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										143
									
								
								frigate/motion/improved_motion.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,143 @@ | ||||
| import cv2 | ||||
| import imutils | ||||
| import numpy as np | ||||
| 
 | ||||
| from frigate.config import MotionConfig | ||||
| from frigate.motion import MotionDetector | ||||
| 
 | ||||
| 
 | ||||
| class ImprovedMotionDetector(MotionDetector): | ||||
|     def __init__( | ||||
|         self, | ||||
|         frame_shape, | ||||
|         config: MotionConfig, | ||||
|         fps: int, | ||||
|         improve_contrast, | ||||
|         threshold, | ||||
|         contour_area, | ||||
|     ): | ||||
|         self.config = config | ||||
|         self.frame_shape = frame_shape | ||||
|         self.resize_factor = frame_shape[0] / config.frame_height | ||||
|         self.motion_frame_size = ( | ||||
|             config.frame_height, | ||||
|             config.frame_height * frame_shape[1] // frame_shape[0], | ||||
|         ) | ||||
|         self.avg_frame = np.zeros(self.motion_frame_size, np.float32) | ||||
|         self.avg_delta = np.zeros(self.motion_frame_size, np.float32) | ||||
|         self.motion_frame_count = 0 | ||||
|         self.frame_counter = 0 | ||||
|         resized_mask = cv2.resize( | ||||
|             config.mask, | ||||
|             dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), | ||||
|             interpolation=cv2.INTER_LINEAR, | ||||
|         ) | ||||
|         self.mask = np.where(resized_mask == [0]) | ||||
|         self.save_images = False | ||||
|         self.calibrating = True | ||||
|         self.improve_contrast = improve_contrast | ||||
|         self.threshold = threshold | ||||
|         self.contour_area = contour_area | ||||
| 
 | ||||
|     def detect(self, frame): | ||||
|         motion_boxes = [] | ||||
| 
 | ||||
|         gray = frame[0 : self.frame_shape[0], 0 : self.frame_shape[1]] | ||||
| 
 | ||||
|         # resize frame | ||||
|         resized_frame = cv2.resize( | ||||
|             gray, | ||||
|             dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), | ||||
|             interpolation=cv2.INTER_LINEAR, | ||||
|         ) | ||||
| 
 | ||||
|         resized_frame = cv2.GaussianBlur(resized_frame, (3, 3), cv2.BORDER_DEFAULT) | ||||
| 
 | ||||
|         # Improve contrast | ||||
|         if self.improve_contrast.value: | ||||
|             resized_frame = cv2.equalizeHist(resized_frame) | ||||
| 
 | ||||
|         # mask frame | ||||
|         resized_frame[self.mask] = [255] | ||||
| 
 | ||||
|         if self.save_images or self.calibrating: | ||||
|             self.frame_counter += 1 | ||||
|         # compare to average | ||||
|         frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame)) | ||||
| 
 | ||||
|         # compute the threshold image for the current frame | ||||
|         thresh = cv2.threshold( | ||||
|             frameDelta, self.threshold.value, 255, cv2.THRESH_BINARY | ||||
|         )[1] | ||||
| 
 | ||||
|         # dilate the thresholded image to fill in holes, then find contours | ||||
|         # on thresholded image | ||||
|         thresh_dilated = cv2.dilate(thresh, None, iterations=1) | ||||
|         cnts = cv2.findContours( | ||||
|             thresh_dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE | ||||
|         ) | ||||
|         cnts = imutils.grab_contours(cnts) | ||||
| 
 | ||||
|         # loop over the contours | ||||
|         total_contour_area = 0 | ||||
|         for c in cnts: | ||||
|             # if the contour is big enough, count it as motion | ||||
|             contour_area = cv2.contourArea(c) | ||||
|             total_contour_area += contour_area | ||||
|             if contour_area > self.contour_area.value: | ||||
|                 x, y, w, h = cv2.boundingRect(c) | ||||
|                 motion_boxes.append( | ||||
|                     ( | ||||
|                         int(x * self.resize_factor), | ||||
|                         int(y * self.resize_factor), | ||||
|                         int((x + w) * self.resize_factor), | ||||
|                         int((y + h) * self.resize_factor), | ||||
|                     ) | ||||
|                 ) | ||||
| 
 | ||||
|         pct_motion = total_contour_area / ( | ||||
|             self.motion_frame_size[0] * self.motion_frame_size[1] | ||||
|         ) | ||||
| 
 | ||||
|         # once the motion drops to less than 1% for the first time, assume its calibrated | ||||
|         if pct_motion < 0.01: | ||||
|             self.calibrating = False | ||||
| 
 | ||||
|         # if calibrating or the motion contours are > 80% of the image area (lightning, ir, ptz) recalibrate | ||||
|         if self.calibrating or pct_motion > self.config.lightning_threshold: | ||||
|             motion_boxes = [] | ||||
|             self.calibrating = True | ||||
| 
 | ||||
|         if self.save_images: | ||||
|             thresh_dilated = cv2.cvtColor(thresh_dilated, cv2.COLOR_GRAY2BGR) | ||||
|             for b in motion_boxes: | ||||
|                 cv2.rectangle( | ||||
|                     thresh_dilated, | ||||
|                     (int(b[0] / self.resize_factor), int(b[1] / self.resize_factor)), | ||||
|                     (int(b[2] / self.resize_factor), int(b[3] / self.resize_factor)), | ||||
|                     (0, 0, 255), | ||||
|                     2, | ||||
|                 ) | ||||
|             cv2.imwrite( | ||||
|                 f"debug/frames/improved-{self.frame_counter}.jpg", thresh_dilated | ||||
|             ) | ||||
| 
 | ||||
|         if len(motion_boxes) > 0: | ||||
|             self.motion_frame_count += 1 | ||||
|             if self.motion_frame_count >= 10: | ||||
|                 # only average in the current frame if the difference persists for a bit | ||||
|                 cv2.accumulateWeighted( | ||||
|                     resized_frame, | ||||
|                     self.avg_frame, | ||||
|                     0.2 if self.calibrating else self.config.frame_alpha, | ||||
|                 ) | ||||
|         else: | ||||
|             # when no motion, just keep averaging the frames together | ||||
|             cv2.accumulateWeighted( | ||||
|                 resized_frame, | ||||
|                 self.avg_frame, | ||||
|                 0.2 if self.calibrating else self.config.frame_alpha, | ||||
|             ) | ||||
|             self.motion_frame_count = 0 | ||||
| 
 | ||||
|         return motion_boxes | ||||
| @ -758,7 +758,7 @@ class TestConfig(unittest.TestCase): | ||||
|         assert config == frigate_config.dict(exclude_unset=True) | ||||
| 
 | ||||
|         runtime_config = frigate_config.runtime_config() | ||||
|         assert round(runtime_config.cameras["back"].motion.contour_area) == 30 | ||||
|         assert round(runtime_config.cameras["back"].motion.contour_area) == 15 | ||||
| 
 | ||||
|     def test_merge_labelmap(self): | ||||
|         config = { | ||||
|  | ||||
							
								
								
									
										178
									
								
								frigate/test/test_video.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										178
									
								
								frigate/test/test_video.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,178 @@ | ||||
| import unittest | ||||
| 
 | ||||
| import cv2 | ||||
| import numpy as np | ||||
| from norfair.drawing.color import Palette | ||||
| from norfair.drawing.drawer import Drawer | ||||
| 
 | ||||
| from frigate.video import ( | ||||
|     get_cluster_boundary, | ||||
|     get_cluster_candidates, | ||||
|     get_cluster_region, | ||||
| ) | ||||
| 
 | ||||
| 
 | ||||
| def draw_box(frame, box, color=(255, 0, 0), thickness=2): | ||||
|     cv2.rectangle( | ||||
|         frame, | ||||
|         (box[0], box[1]), | ||||
|         (box[2], box[3]), | ||||
|         color, | ||||
|         thickness, | ||||
|     ) | ||||
| 
 | ||||
| 
 | ||||
| def save_clusters_image(name, boxes, candidates, regions=[]): | ||||
|     canvas = np.zeros((1000, 2000, 3), np.uint8) | ||||
|     for cluster in candidates: | ||||
|         color = Palette.choose_color(np.random.rand()) | ||||
|         for b in cluster: | ||||
|             box = boxes[b] | ||||
|             draw_box(canvas, box, color, 2) | ||||
|             # bottom right | ||||
|             text_anchor = ( | ||||
|                 box[2], | ||||
|                 box[3], | ||||
|             ) | ||||
|             canvas = Drawer.text( | ||||
|                 canvas, | ||||
|                 str(b), | ||||
|                 position=text_anchor, | ||||
|                 size=None, | ||||
|                 color=(255, 255, 255), | ||||
|                 thickness=None, | ||||
|             ) | ||||
|     for r in regions: | ||||
|         draw_box(canvas, r, (0, 255, 0), 2) | ||||
|     cv2.imwrite( | ||||
|         f"debug/frames/{name}.jpg", | ||||
|         canvas, | ||||
|     ) | ||||
| 
 | ||||
| 
 | ||||
| def save_cluster_boundary_image(name, boxes, bounding_boxes): | ||||
|     canvas = np.zeros((1000, 2000, 3), np.uint8) | ||||
|     color = Palette.choose_color(np.random.rand()) | ||||
|     for box in boxes: | ||||
|         draw_box(canvas, box, color, 2) | ||||
|     for bound in bounding_boxes: | ||||
|         draw_box(canvas, bound, (0, 255, 0), 2) | ||||
|     cv2.imwrite( | ||||
|         f"debug/frames/{name}.jpg", | ||||
|         canvas, | ||||
|     ) | ||||
| 
 | ||||
| 
 | ||||
| class TestConfig(unittest.TestCase): | ||||
|     def setUp(self): | ||||
|         self.frame_shape = (1000, 2000) | ||||
|         self.min_region_size = 160 | ||||
| 
 | ||||
|     def test_cluster_candidates(self): | ||||
|         boxes = [(100, 100, 200, 200), (202, 150, 252, 200), (900, 900, 950, 950)] | ||||
| 
 | ||||
|         cluster_candidates = get_cluster_candidates( | ||||
|             self.frame_shape, self.min_region_size, boxes | ||||
|         ) | ||||
| 
 | ||||
|         # save_clusters_image("cluster_candidates", boxes, cluster_candidates) | ||||
| 
 | ||||
|         assert len(cluster_candidates) == 2 | ||||
| 
 | ||||
|     def test_cluster_boundary(self): | ||||
|         boxes = [(100, 100, 200, 200), (215, 215, 325, 325)] | ||||
|         boundary_boxes = [ | ||||
|             get_cluster_boundary(box, self.min_region_size) for box in boxes | ||||
|         ] | ||||
| 
 | ||||
|         # save_cluster_boundary_image("bound", boxes, boundary_boxes) | ||||
|         assert len(boundary_boxes) == 2 | ||||
| 
 | ||||
|     def test_cluster_regions(self): | ||||
|         boxes = [(100, 100, 200, 200), (202, 150, 252, 200), (900, 900, 950, 950)] | ||||
| 
 | ||||
|         cluster_candidates = get_cluster_candidates( | ||||
|             self.frame_shape, self.min_region_size, boxes | ||||
|         ) | ||||
| 
 | ||||
|         regions = [ | ||||
|             get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes) | ||||
|             for candidate in cluster_candidates | ||||
|         ] | ||||
| 
 | ||||
|         # save_clusters_image("regions", boxes, cluster_candidates, regions) | ||||
|         assert len(regions) == 2 | ||||
| 
 | ||||
|     def test_box_too_small_for_cluster(self): | ||||
|         boxes = [(100, 100, 600, 600), (655, 100, 700, 145)] | ||||
| 
 | ||||
|         cluster_candidates = get_cluster_candidates( | ||||
|             self.frame_shape, self.min_region_size, boxes | ||||
|         ) | ||||
| 
 | ||||
|         regions = [ | ||||
|             get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes) | ||||
|             for candidate in cluster_candidates | ||||
|         ] | ||||
| 
 | ||||
|         save_clusters_image("too_small", boxes, cluster_candidates, regions) | ||||
| 
 | ||||
|         assert len(cluster_candidates) == 2 | ||||
|         assert len(regions) == 2 | ||||
| 
 | ||||
|     def test_redundant_clusters(self): | ||||
|         boxes = [(100, 100, 200, 200), (305, 305, 415, 415)] | ||||
| 
 | ||||
|         cluster_candidates = get_cluster_candidates( | ||||
|             self.frame_shape, self.min_region_size, boxes | ||||
|         ) | ||||
| 
 | ||||
|         regions = [ | ||||
|             get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes) | ||||
|             for candidate in cluster_candidates | ||||
|         ] | ||||
| 
 | ||||
|         # save_clusters_image("redundant", boxes, cluster_candidates, regions) | ||||
| 
 | ||||
|         assert len(cluster_candidates) == 2 | ||||
|         assert all([len(c) == 1 for c in cluster_candidates]) | ||||
|         assert len(regions) == 2 | ||||
| 
 | ||||
|     def test_combine_boxes(self): | ||||
|         boxes = [ | ||||
|             (460, 0, 561, 144), | ||||
|             (565, 0, 586, 71), | ||||
|         ] | ||||
| 
 | ||||
|         # boundary_boxes = [get_cluster_boundary(box) for box in boxes] | ||||
|         # save_cluster_boundary_image("combine_bound", boxes, boundary_boxes) | ||||
| 
 | ||||
|         cluster_candidates = get_cluster_candidates( | ||||
|             self.frame_shape, self.min_region_size, boxes | ||||
|         ) | ||||
| 
 | ||||
|         regions = [ | ||||
|             get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes) | ||||
|             for candidate in cluster_candidates | ||||
|         ] | ||||
| 
 | ||||
|         # save_clusters_image("combine", boxes, cluster_candidates, regions) | ||||
|         assert len(regions) == 1 | ||||
| 
 | ||||
|     def test_dont_combine_boxes(self): | ||||
|         boxes = [(460, 0, 532, 129), (586, 0, 606, 46)] | ||||
| 
 | ||||
|         # boundary_boxes = [get_cluster_boundary(box) for box in boxes] | ||||
|         # save_cluster_boundary_image("dont_combine_bound", boxes, boundary_boxes) | ||||
| 
 | ||||
|         cluster_candidates = get_cluster_candidates( | ||||
|             self.frame_shape, self.min_region_size, boxes | ||||
|         ) | ||||
| 
 | ||||
|         regions = [ | ||||
|             get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes) | ||||
|             for candidate in cluster_candidates | ||||
|         ] | ||||
| 
 | ||||
|         # save_clusters_image("dont_combine", boxes, cluster_candidates, regions) | ||||
|         assert len(regions) == 2 | ||||
| @ -231,16 +231,32 @@ class NorfairTracker(ObjectTracker): | ||||
|         # update or create new tracks | ||||
|         active_ids = [] | ||||
|         for t in tracked_objects: | ||||
|             estimate = tuple(t.estimate.flatten().astype(int)) | ||||
|             # keep the estimate within the bounds of the image | ||||
|             estimate = ( | ||||
|                 max(0, estimate[0]), | ||||
|                 max(0, estimate[1]), | ||||
|                 min(self.detect_config.width - 1, estimate[2]), | ||||
|                 min(self.detect_config.height - 1, estimate[3]), | ||||
|             ) | ||||
|             obj = { | ||||
|                 **t.last_detection.data, | ||||
|                 "estimate": estimate, | ||||
|             } | ||||
|             active_ids.append(t.global_id) | ||||
|             if t.global_id not in self.track_id_map: | ||||
|                 self.register(t.global_id, t.last_detection.data) | ||||
|                 self.register(t.global_id, obj) | ||||
|             # if there wasn't a detection in this frame, increment disappeared | ||||
|             elif t.last_detection.data["frame_time"] != frame_time: | ||||
|                 id = self.track_id_map[t.global_id] | ||||
|                 self.disappeared[id] += 1 | ||||
|                 # sometimes the estimate gets way off | ||||
|                 # only update if the upper left corner is actually upper left | ||||
|                 if estimate[0] < estimate[2] and estimate[1] < estimate[3]: | ||||
|                     self.tracked_objects[id]["estimate"] = obj["estimate"] | ||||
|             # else update it | ||||
|             else: | ||||
|                 self.update(t.global_id, t.last_detection.data) | ||||
|                 self.update(t.global_id, obj) | ||||
| 
 | ||||
|         # clear expired tracks | ||||
|         expired_ids = [k for k in self.track_id_map.keys() if k not in active_ids] | ||||
|  | ||||
							
								
								
									
										285
									
								
								frigate/video.py
									
									
									
									
									
								
							
							
						
						
									
										285
									
								
								frigate/video.py
									
									
									
									
									
								
							| @ -1,9 +1,9 @@ | ||||
| import datetime | ||||
| import logging | ||||
| import math | ||||
| import multiprocessing as mp | ||||
| import os | ||||
| import queue | ||||
| import random | ||||
| import signal | ||||
| import subprocess as sp | ||||
| import threading | ||||
| @ -18,6 +18,7 @@ from frigate.config import CameraConfig, DetectConfig, PixelFormatEnum | ||||
| from frigate.const import CACHE_DIR | ||||
| from frigate.log import LogPipe | ||||
| from frigate.motion import MotionDetector | ||||
| from frigate.motion.improved_motion import ImprovedMotionDetector | ||||
| from frigate.object_detection import RemoteObjectDetector | ||||
| from frigate.track import ObjectTracker | ||||
| from frigate.track.norfair_tracker import NorfairTracker | ||||
| @ -27,7 +28,7 @@ from frigate.util import ( | ||||
|     SharedMemoryFrameManager, | ||||
|     area, | ||||
|     calculate_region, | ||||
|     clipped, | ||||
|     draw_box_with_label, | ||||
|     intersection, | ||||
|     intersection_over_union, | ||||
|     listen, | ||||
| @ -462,9 +463,10 @@ def track_camera( | ||||
|     objects_to_track = config.objects.track | ||||
|     object_filters = config.objects.filters | ||||
| 
 | ||||
|     motion_detector = MotionDetector( | ||||
|     motion_detector = ImprovedMotionDetector( | ||||
|         frame_shape, | ||||
|         config.motion, | ||||
|         config.detect.fps, | ||||
|         improve_contrast_enabled, | ||||
|         motion_threshold, | ||||
|         motion_contour_area, | ||||
| @ -505,6 +507,13 @@ def box_overlaps(b1, b2): | ||||
|     return True | ||||
| 
 | ||||
| 
 | ||||
| def box_inside(b1, b2): | ||||
|     # check if b2 is inside b1 | ||||
|     if b2[0] >= b1[0] and b2[1] >= b1[1] and b2[2] <= b1[2] and b2[3] <= b1[3]: | ||||
|         return True | ||||
|     return False | ||||
| 
 | ||||
| 
 | ||||
| def reduce_boxes(boxes, iou_threshold=0.0): | ||||
|     clusters = [] | ||||
| 
 | ||||
| @ -575,6 +584,91 @@ def detect( | ||||
|     return detections | ||||
| 
 | ||||
| 
 | ||||
| def get_cluster_boundary(box, min_region): | ||||
|     # compute the max region size for the current box (box is 10% of region) | ||||
|     box_width = box[2] - box[0] | ||||
|     box_height = box[3] - box[1] | ||||
|     max_region_area = abs(box_width * box_height) / 0.1 | ||||
|     max_region_size = max(min_region, int(math.sqrt(max_region_area))) | ||||
| 
 | ||||
|     centroid = (box_width / 2 + box[0], box_height / 2 + box[1]) | ||||
| 
 | ||||
|     max_x_dist = int(max_region_size - box_width / 2 * 1.1) | ||||
|     max_y_dist = int(max_region_size - box_height / 2 * 1.1) | ||||
| 
 | ||||
|     return [ | ||||
|         int(centroid[0] - max_x_dist), | ||||
|         int(centroid[1] - max_y_dist), | ||||
|         int(centroid[0] + max_x_dist), | ||||
|         int(centroid[1] + max_y_dist), | ||||
|     ] | ||||
| 
 | ||||
| 
 | ||||
| def get_cluster_candidates(frame_shape, min_region, boxes): | ||||
|     # and create a cluster of other boxes using it's max region size | ||||
|     # only include boxes where the region is an appropriate(except the region could possibly be smaller?) | ||||
|     # size in the cluster. in order to be in the cluster, the furthest corner needs to be within x,y offset | ||||
|     # determined by the max_region size minus half the box + 20% | ||||
|     # TODO: see if we can do this with numpy | ||||
|     cluster_candidates = [] | ||||
|     used_boxes = [] | ||||
|     # loop over each box | ||||
|     for current_index, b in enumerate(boxes): | ||||
|         if current_index in used_boxes: | ||||
|             continue | ||||
|         cluster = [current_index] | ||||
|         used_boxes.append(current_index) | ||||
|         cluster_boundary = get_cluster_boundary(b, min_region) | ||||
|         # find all other boxes that fit inside the boundary | ||||
|         for compare_index, compare_box in enumerate(boxes): | ||||
|             if compare_index in used_boxes: | ||||
|                 continue | ||||
| 
 | ||||
|             # if the box is not inside the potential cluster area, cluster them | ||||
|             if not box_inside(cluster_boundary, compare_box): | ||||
|                 continue | ||||
| 
 | ||||
|             # get the region if you were to add this box to the cluster | ||||
|             potential_cluster = cluster + [compare_index] | ||||
|             cluster_region = get_cluster_region( | ||||
|                 frame_shape, min_region, potential_cluster, boxes | ||||
|             ) | ||||
|             # if region could be smaller and either box would be too small | ||||
|             # for the resulting region, dont cluster | ||||
|             should_cluster = True | ||||
|             if (cluster_region[2] - cluster_region[0]) > min_region: | ||||
|                 for b in potential_cluster: | ||||
|                     box = boxes[b] | ||||
|                     # boxes should be more than 5% of the area of the region | ||||
|                     if area(box) / area(cluster_region) < 0.05: | ||||
|                         should_cluster = False | ||||
|                         break | ||||
| 
 | ||||
|             if should_cluster: | ||||
|                 cluster.append(compare_index) | ||||
|                 used_boxes.append(compare_index) | ||||
|         cluster_candidates.append(cluster) | ||||
| 
 | ||||
|     # return the unique clusters only | ||||
|     unique = {tuple(sorted(c)) for c in cluster_candidates} | ||||
|     return [list(tup) for tup in unique] | ||||
| 
 | ||||
| 
 | ||||
| def get_cluster_region(frame_shape, min_region, cluster, boxes): | ||||
|     min_x = frame_shape[1] | ||||
|     min_y = frame_shape[0] | ||||
|     max_x = 0 | ||||
|     max_y = 0 | ||||
|     for b in cluster: | ||||
|         min_x = min(boxes[b][0], min_x) | ||||
|         min_y = min(boxes[b][1], min_y) | ||||
|         max_x = max(boxes[b][2], max_x) | ||||
|         max_y = max(boxes[b][3], max_y) | ||||
|     return calculate_region( | ||||
|         frame_shape, min_x, min_y, max_x, max_y, min_region, multiplier=1.2 | ||||
|     ) | ||||
| 
 | ||||
| 
 | ||||
| def process_frames( | ||||
|     camera_name: str, | ||||
|     frame_queue: mp.Queue, | ||||
| @ -603,6 +697,8 @@ def process_frames( | ||||
| 
 | ||||
|     startup_scan_counter = 0 | ||||
| 
 | ||||
|     region_min_size = int(max(model_config.height, model_config.width) / 2) | ||||
| 
 | ||||
|     while not stop_event.is_set(): | ||||
|         if exit_on_empty and frame_queue.empty(): | ||||
|             logger.info("Exiting track_objects...") | ||||
| @ -654,35 +750,22 @@ def process_frames( | ||||
| 
 | ||||
|             # get tracked object boxes that aren't stationary | ||||
|             tracked_object_boxes = [ | ||||
|                 obj["box"] | ||||
|                 obj["estimate"] | ||||
|                 for obj in object_tracker.tracked_objects.values() | ||||
|                 if obj["id"] not in stationary_object_ids | ||||
|             ] | ||||
| 
 | ||||
|             # combine motion boxes with known locations of existing objects | ||||
|             combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes) | ||||
|             combined_boxes = motion_boxes + tracked_object_boxes | ||||
| 
 | ||||
|             region_min_size = max(model_config.height, model_config.width) | ||||
|             # compute regions | ||||
|             regions = [ | ||||
|                 calculate_region( | ||||
|                     frame_shape, | ||||
|                     a[0], | ||||
|                     a[1], | ||||
|                     a[2], | ||||
|                     a[3], | ||||
|                     region_min_size, | ||||
|                     multiplier=random.uniform(1.2, 1.5), | ||||
|                 ) | ||||
|                 for a in combined_boxes | ||||
|             ] | ||||
|             cluster_candidates = get_cluster_candidates( | ||||
|                 frame_shape, region_min_size, combined_boxes | ||||
|             ) | ||||
| 
 | ||||
|             # consolidate regions with heavy overlap | ||||
|             regions = [ | ||||
|                 calculate_region( | ||||
|                     frame_shape, a[0], a[1], a[2], a[3], region_min_size, multiplier=1.0 | ||||
|                 get_cluster_region( | ||||
|                     frame_shape, region_min_size, candidate, combined_boxes | ||||
|                 ) | ||||
|                 for a in reduce_boxes(regions, 0.4) | ||||
|                 for candidate in cluster_candidates | ||||
|             ] | ||||
| 
 | ||||
|             # if starting up, get the next startup scan region | ||||
| @ -733,74 +816,38 @@ def process_frames( | ||||
|                 ) | ||||
| 
 | ||||
|             ######### | ||||
|             # merge objects, check for clipped objects and look again up to 4 times | ||||
|             # merge objects | ||||
|             ######### | ||||
|             refining = len(regions) > 0 | ||||
|             refine_count = 0 | ||||
|             while refining and refine_count < 4: | ||||
|                 refining = False | ||||
|             # group by name | ||||
|             detected_object_groups = defaultdict(lambda: []) | ||||
|             for detection in detections: | ||||
|                 detected_object_groups[detection[0]].append(detection) | ||||
| 
 | ||||
|                 # group by name | ||||
|                 detected_object_groups = defaultdict(lambda: []) | ||||
|                 for detection in detections: | ||||
|                     detected_object_groups[detection[0]].append(detection) | ||||
|             selected_objects = [] | ||||
|             for group in detected_object_groups.values(): | ||||
|                 # apply non-maxima suppression to suppress weak, overlapping bounding boxes | ||||
|                 # o[2] is the box of the object: xmin, ymin, xmax, ymax | ||||
|                 # apply max/min to ensure values do not exceed the known frame size | ||||
|                 boxes = [ | ||||
|                     ( | ||||
|                         o[2][0], | ||||
|                         o[2][1], | ||||
|                         o[2][2] - o[2][0], | ||||
|                         o[2][3] - o[2][1], | ||||
|                     ) | ||||
|                     for o in group | ||||
|                 ] | ||||
|                 confidences = [o[1] for o in group] | ||||
|                 idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) | ||||
| 
 | ||||
|                 selected_objects = [] | ||||
|                 for group in detected_object_groups.values(): | ||||
|                     # apply non-maxima suppression to suppress weak, overlapping bounding boxes | ||||
|                     # o[2] is the box of the object: xmin, ymin, xmax, ymax | ||||
|                     # apply max/min to ensure values do not exceed the known frame size | ||||
|                     boxes = [ | ||||
|                         ( | ||||
|                             o[2][0], | ||||
|                             o[2][1], | ||||
|                             o[2][2] - o[2][0], | ||||
|                             o[2][3] - o[2][1], | ||||
|                         ) | ||||
|                         for o in group | ||||
|                     ] | ||||
|                     confidences = [o[1] for o in group] | ||||
|                     idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) | ||||
|                 # add objects | ||||
|                 for index in idxs: | ||||
|                     index = index if isinstance(index, np.int32) else index[0] | ||||
|                     obj = group[index] | ||||
|                     selected_objects.append(obj) | ||||
| 
 | ||||
|                     for index in idxs: | ||||
|                         index = index if isinstance(index, np.int32) else index[0] | ||||
|                         obj = group[index] | ||||
|                         if clipped(obj, frame_shape): | ||||
|                             box = obj[2] | ||||
|                             # calculate a new region that will hopefully get the entire object | ||||
|                             region = calculate_region( | ||||
|                                 frame_shape, | ||||
|                                 box[0], | ||||
|                                 box[1], | ||||
|                                 box[2], | ||||
|                                 box[3], | ||||
|                                 region_min_size, | ||||
|                             ) | ||||
| 
 | ||||
|                             regions.append(region) | ||||
| 
 | ||||
|                             selected_objects.extend( | ||||
|                                 detect( | ||||
|                                     detect_config, | ||||
|                                     object_detector, | ||||
|                                     frame, | ||||
|                                     model_config, | ||||
|                                     region, | ||||
|                                     objects_to_track, | ||||
|                                     object_filters, | ||||
|                                 ) | ||||
|                             ) | ||||
| 
 | ||||
|                             refining = True | ||||
|                         else: | ||||
|                             selected_objects.append(obj) | ||||
| 
 | ||||
|                 # set the detections list to only include top, complete objects | ||||
|                 # and new detections | ||||
|                 detections = selected_objects | ||||
| 
 | ||||
|                 if refining: | ||||
|                     refine_count += 1 | ||||
|             # set the detections list to only include top objects | ||||
|             detections = selected_objects | ||||
| 
 | ||||
|             ## drop detections that overlap too much | ||||
|             consolidated_detections = [] | ||||
| @ -848,7 +895,7 @@ def process_frames( | ||||
|             else: | ||||
|                 object_tracker.update_frame_times(frame_time) | ||||
| 
 | ||||
|         # debug tracking by writing frames | ||||
|         # debug object tracking | ||||
|         if False: | ||||
|             bgr_frame = cv2.cvtColor( | ||||
|                 frame, | ||||
| @ -858,7 +905,67 @@ def process_frames( | ||||
|             cv2.imwrite( | ||||
|                 f"debug/frames/track-{'{:.6f}'.format(frame_time)}.jpg", bgr_frame | ||||
|             ) | ||||
|         # debug | ||||
|         if False: | ||||
|             bgr_frame = cv2.cvtColor( | ||||
|                 frame, | ||||
|                 cv2.COLOR_YUV2BGR_I420, | ||||
|             ) | ||||
| 
 | ||||
|             for m_box in motion_boxes: | ||||
|                 cv2.rectangle( | ||||
|                     bgr_frame, | ||||
|                     (m_box[0], m_box[1]), | ||||
|                     (m_box[2], m_box[3]), | ||||
|                     (0, 0, 255), | ||||
|                     2, | ||||
|                 ) | ||||
| 
 | ||||
|             for b in tracked_object_boxes: | ||||
|                 cv2.rectangle( | ||||
|                     bgr_frame, | ||||
|                     (b[0], b[1]), | ||||
|                     (b[2], b[3]), | ||||
|                     (255, 0, 0), | ||||
|                     2, | ||||
|                 ) | ||||
| 
 | ||||
|             for obj in object_tracker.tracked_objects.values(): | ||||
|                 if obj["frame_time"] == frame_time: | ||||
|                     thickness = 2 | ||||
|                     color = model_config.colormap[obj["label"]] | ||||
|                 else: | ||||
|                     thickness = 1 | ||||
|                     color = (255, 0, 0) | ||||
| 
 | ||||
|                 # draw the bounding boxes on the frame | ||||
|                 box = obj["box"] | ||||
| 
 | ||||
|                 draw_box_with_label( | ||||
|                     bgr_frame, | ||||
|                     box[0], | ||||
|                     box[1], | ||||
|                     box[2], | ||||
|                     box[3], | ||||
|                     obj["label"], | ||||
|                     obj["id"], | ||||
|                     thickness=thickness, | ||||
|                     color=color, | ||||
|                 ) | ||||
| 
 | ||||
|             for region in regions: | ||||
|                 cv2.rectangle( | ||||
|                     bgr_frame, | ||||
|                     (region[0], region[1]), | ||||
|                     (region[2], region[3]), | ||||
|                     (0, 255, 0), | ||||
|                     2, | ||||
|                 ) | ||||
| 
 | ||||
|             cv2.imwrite( | ||||
|                 f"debug/frames/{camera_name}-{'{:.6f}'.format(frame_time)}.jpg", | ||||
|                 bgr_frame, | ||||
|             ) | ||||
|         # add to the queue if not full | ||||
|         if detected_objects_queue.full(): | ||||
|             frame_manager.delete(f"{camera_name}{frame_time}") | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user