Improve motion detection and region selection (#6741)

* refactor existing motion detector

* implement and use cnt bgsub

* pass fps to motion detector

* create a simplified motion detector

* lightning detection

* update default motion config

* lint imports

* use estimated boxes for regions

* use improved motion detector

* update test

* use a different strategy for clustering motion and object boxes

* increase alpha during calibration

* simplify object consolidation

* add some reasonable constraints to the estimated box

* adjust cluster boundary to 10%

* refactor

* add disabled debug code

* fix variable scope
This commit is contained in:
Blake Blackshear 2023-06-11 09:45:11 -04:00 committed by GitHub
parent 32569842d3
commit d81dd60fef
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 693 additions and 125 deletions

103
benchmark_motion.py Normal file
View File

@ -0,0 +1,103 @@
import datetime
import multiprocessing as mp
import os
from statistics import mean
import cv2
import numpy as np
from frigate.config import MotionConfig
from frigate.motion.frigate_motion import FrigateMotionDetector
from frigate.motion.improved_motion import ImprovedMotionDetector
# get info on the video
# cap = cv2.VideoCapture("debug/front_cam_2023_05_23_08_41__2023_05_23_08_43.mp4")
# cap = cv2.VideoCapture("debug/motion_test_clips/rain_1.mp4")
cap = cv2.VideoCapture("debug/motion_test_clips/ir_off.mp4")
# cap = cv2.VideoCapture("airport.mp4")
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
frame_shape = (height, width, 3)
# create the motion config
motion_config = MotionConfig()
motion_config.mask = np.zeros((height, width), np.uint8)
motion_config.mask[:] = 255
motion_config.improve_contrast = 1
motion_config.frame_alpha = 0.02
motion_config.threshold = 40
motion_config.contour_area = 15
save_images = True
# create motion detectors
frigate_motion_detector = FrigateMotionDetector(
frame_shape=frame_shape,
config=motion_config,
fps=fps,
improve_contrast=mp.Value("i", motion_config.improve_contrast),
threshold=mp.Value("i", motion_config.threshold),
contour_area=mp.Value("i", motion_config.contour_area),
)
frigate_motion_detector.save_images = save_images
improved_motion_detector = ImprovedMotionDetector(
frame_shape=frame_shape,
config=motion_config,
fps=fps,
improve_contrast=mp.Value("i", motion_config.improve_contrast),
threshold=mp.Value("i", motion_config.threshold),
contour_area=mp.Value("i", motion_config.contour_area),
)
improved_motion_detector.save_images = save_images
# read and process frames
frame_times = {"frigate": [], "improved": []}
ret, frame = cap.read()
frame_counter = 1
while ret:
yuv_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2YUV_I420)
start_frame = datetime.datetime.now().timestamp()
frigate_motion_detector.detect(yuv_frame)
frame_times["frigate"].append(datetime.datetime.now().timestamp() - start_frame)
start_frame = datetime.datetime.now().timestamp()
improved_motion_detector.detect(yuv_frame)
frame_times["improved"].append(datetime.datetime.now().timestamp() - start_frame)
frigate_frame = f"debug/frames/frigate-{frame_counter}.jpg"
improved_frame = f"debug/frames/improved-{frame_counter}.jpg"
if os.path.exists(frigate_frame) and os.path.exists(improved_frame):
image_row_1 = cv2.hconcat(
[
cv2.imread(frigate_frame),
cv2.imread(improved_frame),
]
)
image_row_2 = cv2.resize(
frame,
dsize=(
frigate_motion_detector.motion_frame_size[1] * 2,
frigate_motion_detector.motion_frame_size[0] * 2,
),
interpolation=cv2.INTER_LINEAR,
)
cv2.imwrite(
f"debug/frames/all-{frame_counter}.jpg",
cv2.vconcat([image_row_1, image_row_2]),
)
os.unlink(frigate_frame)
os.unlink(improved_frame)
frame_counter += 1
ret, frame = cap.read()
cap.release()
print("Frigate Motion Detector")
print(f"Average frame processing time: {mean(frame_times['frigate'])*1000:.2f}ms")
print("Improved Motion Detector")
print(f"Average frame processing time: {mean(frame_times['improved'])*1000:.2f}ms")

View File

@ -261,27 +261,29 @@ motion:
# Optional: The threshold passed to cv2.threshold to determine if a pixel is different enough to be counted as motion. (default: shown below) # Optional: The threshold passed to cv2.threshold to determine if a pixel is different enough to be counted as motion. (default: shown below)
# Increasing this value will make motion detection less sensitive and decreasing it will make motion detection more sensitive. # Increasing this value will make motion detection less sensitive and decreasing it will make motion detection more sensitive.
# The value should be between 1 and 255. # The value should be between 1 and 255.
threshold: 25 threshold: 40
# Optional: Minimum size in pixels in the resized motion image that counts as motion (default: 30) # Optional: The percentage of the image used to detect lightning or other substantial changes where motion detection
# needs to recalibrate. (default: shown below)
# Increasing this value will make motion detection more likely to consider lightning or ir mode changes as valid motion.
# Decreasing this value will make motion detection more likely to ignore large amounts of motion such as a person approaching
# a doorbell camera.
lightning_threshold: 0.8
# Optional: Minimum size in pixels in the resized motion image that counts as motion (default: shown below)
# Increasing this value will prevent smaller areas of motion from being detected. Decreasing will # Increasing this value will prevent smaller areas of motion from being detected. Decreasing will
# make motion detection more sensitive to smaller moving objects. # make motion detection more sensitive to smaller moving objects.
# As a rule of thumb: # As a rule of thumb:
# - 15 - high sensitivity # - 15 - high sensitivity
# - 30 - medium sensitivity # - 30 - medium sensitivity
# - 50 - low sensitivity # - 50 - low sensitivity
contour_area: 30 contour_area: 15
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging the motion delta across multiple frames (default: shown below)
# Higher values mean the current frame impacts the delta a lot, and a single raindrop may register as motion.
# Too low and a fast moving person wont be detected as motion.
delta_alpha: 0.2
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging frames to determine the background (default: shown below) # Optional: Alpha value passed to cv2.accumulateWeighted when averaging frames to determine the background (default: shown below)
# Higher values mean the current frame impacts the average a lot, and a new object will be averaged into the background faster. # Higher values mean the current frame impacts the average a lot, and a new object will be averaged into the background faster.
# Low values will cause things like moving shadows to be detected as motion for longer. # Low values will cause things like moving shadows to be detected as motion for longer.
# https://www.geeksforgeeks.org/background-subtraction-in-an-image-using-concept-of-running-average/ # https://www.geeksforgeeks.org/background-subtraction-in-an-image-using-concept-of-running-average/
frame_alpha: 0.2 frame_alpha: 0.02
# Optional: Height of the resized motion frame (default: 50) # Optional: Height of the resized motion frame (default: 50)
# This operates as an efficient blur alternative. Higher values will result in more granular motion detection at the expense # Higher values will result in more granular motion detection at the expense of higher CPU usage.
# of higher CPU usage. Lower values result in less CPU, but small changes may not register as motion. # Lower values result in less CPU, but small changes may not register as motion.
frame_height: 50 frame_height: 50
# Optional: motion mask # Optional: motion mask
# NOTE: see docs for more detailed info on creating masks # NOTE: see docs for more detailed info on creating masks
@ -289,7 +291,7 @@ motion:
# Optional: improve contrast (default: shown below) # Optional: improve contrast (default: shown below)
# Enables dynamic contrast improvement. This should help improve night detections at the cost of making motion detection more sensitive # Enables dynamic contrast improvement. This should help improve night detections at the cost of making motion detection more sensitive
# for daytime. # for daytime.
improve_contrast: False improve_contrast: True
# Optional: Delay when updating camera motion through MQTT from ON -> OFF (default: shown below). # Optional: Delay when updating camera motion through MQTT from ON -> OFF (default: shown below).
mqtt_off_delay: 30 mqtt_off_delay: 30

View File

@ -189,15 +189,18 @@ class RecordConfig(FrigateBaseModel):
class MotionConfig(FrigateBaseModel): class MotionConfig(FrigateBaseModel):
threshold: int = Field( threshold: int = Field(
default=25, default=40,
title="Motion detection threshold (1-255).", title="Motion detection threshold (1-255).",
ge=1, ge=1,
le=255, le=255,
) )
improve_contrast: bool = Field(default=False, title="Improve Contrast") lightning_threshold: float = Field(
contour_area: Optional[int] = Field(default=30, title="Contour Area") default=0.8, title="Lightning detection threshold (0.3-1.0).", ge=0.3, le=1.0
)
improve_contrast: bool = Field(default=True, title="Improve Contrast")
contour_area: Optional[int] = Field(default=15, title="Contour Area")
delta_alpha: float = Field(default=0.2, title="Delta Alpha") delta_alpha: float = Field(default=0.2, title="Delta Alpha")
frame_alpha: float = Field(default=0.2, title="Frame Alpha") frame_alpha: float = Field(default=0.02, title="Frame Alpha")
frame_height: Optional[int] = Field(default=50, title="Frame Height") frame_height: Optional[int] = Field(default=50, title="Frame Height")
mask: Union[str, List[str]] = Field( mask: Union[str, List[str]] = Field(
default="", title="Coordinates polygon for the motion mask." default="", title="Coordinates polygon for the motion mask."

View File

@ -0,0 +1,22 @@
from abc import ABC, abstractmethod
from typing import Tuple
from frigate.config import MotionConfig
class MotionDetector(ABC):
@abstractmethod
def __init__(
self,
frame_shape: Tuple[int, int, int],
config: MotionConfig,
fps: int,
improve_contrast,
threshold,
contour_area,
):
pass
@abstractmethod
def detect(self, frame):
pass

View File

@ -3,16 +3,18 @@ import imutils
import numpy as np import numpy as np
from frigate.config import MotionConfig from frigate.config import MotionConfig
from frigate.motion import MotionDetector
class MotionDetector: class FrigateMotionDetector(MotionDetector):
def __init__( def __init__(
self, self,
frame_shape, frame_shape,
config: MotionConfig, config: MotionConfig,
improve_contrast_enabled, fps: int,
motion_threshold, improve_contrast,
motion_contour_area, threshold,
contour_area,
): ):
self.config = config self.config = config
self.frame_shape = frame_shape self.frame_shape = frame_shape
@ -32,9 +34,9 @@ class MotionDetector:
) )
self.mask = np.where(resized_mask == [0]) self.mask = np.where(resized_mask == [0])
self.save_images = False self.save_images = False
self.improve_contrast = improve_contrast_enabled self.improve_contrast = improve_contrast
self.threshold = motion_threshold self.threshold = threshold
self.contour_area = motion_contour_area self.contour_area = contour_area
def detect(self, frame): def detect(self, frame):
motion_boxes = [] motion_boxes = []
@ -130,18 +132,10 @@ class MotionDetector:
(0, 0, 255), (0, 0, 255),
2, 2,
) )
# print("--------")
image_row_1 = cv2.hconcat( cv2.imwrite(
[ f"debug/frames/frigate-{self.frame_counter}.jpg", thresh_dilated
cv2.cvtColor(frameDelta, cv2.COLOR_GRAY2BGR),
cv2.cvtColor(avg_delta_image, cv2.COLOR_GRAY2BGR),
]
) )
image_row_2 = cv2.hconcat(
[cv2.cvtColor(thresh, cv2.COLOR_GRAY2BGR), thresh_dilated]
)
combined_image = cv2.vconcat([image_row_1, image_row_2])
cv2.imwrite(f"motion/motion-{self.frame_counter}.jpg", combined_image)
if len(motion_boxes) > 0: if len(motion_boxes) > 0:
self.motion_frame_count += 1 self.motion_frame_count += 1

View File

@ -0,0 +1,143 @@
import cv2
import imutils
import numpy as np
from frigate.config import MotionConfig
from frigate.motion import MotionDetector
class ImprovedMotionDetector(MotionDetector):
def __init__(
self,
frame_shape,
config: MotionConfig,
fps: int,
improve_contrast,
threshold,
contour_area,
):
self.config = config
self.frame_shape = frame_shape
self.resize_factor = frame_shape[0] / config.frame_height
self.motion_frame_size = (
config.frame_height,
config.frame_height * frame_shape[1] // frame_shape[0],
)
self.avg_frame = np.zeros(self.motion_frame_size, np.float32)
self.avg_delta = np.zeros(self.motion_frame_size, np.float32)
self.motion_frame_count = 0
self.frame_counter = 0
resized_mask = cv2.resize(
config.mask,
dsize=(self.motion_frame_size[1], self.motion_frame_size[0]),
interpolation=cv2.INTER_LINEAR,
)
self.mask = np.where(resized_mask == [0])
self.save_images = False
self.calibrating = True
self.improve_contrast = improve_contrast
self.threshold = threshold
self.contour_area = contour_area
def detect(self, frame):
motion_boxes = []
gray = frame[0 : self.frame_shape[0], 0 : self.frame_shape[1]]
# resize frame
resized_frame = cv2.resize(
gray,
dsize=(self.motion_frame_size[1], self.motion_frame_size[0]),
interpolation=cv2.INTER_LINEAR,
)
resized_frame = cv2.GaussianBlur(resized_frame, (3, 3), cv2.BORDER_DEFAULT)
# Improve contrast
if self.improve_contrast.value:
resized_frame = cv2.equalizeHist(resized_frame)
# mask frame
resized_frame[self.mask] = [255]
if self.save_images or self.calibrating:
self.frame_counter += 1
# compare to average
frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame))
# compute the threshold image for the current frame
thresh = cv2.threshold(
frameDelta, self.threshold.value, 255, cv2.THRESH_BINARY
)[1]
# dilate the thresholded image to fill in holes, then find contours
# on thresholded image
thresh_dilated = cv2.dilate(thresh, None, iterations=1)
cnts = cv2.findContours(
thresh_dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
cnts = imutils.grab_contours(cnts)
# loop over the contours
total_contour_area = 0
for c in cnts:
# if the contour is big enough, count it as motion
contour_area = cv2.contourArea(c)
total_contour_area += contour_area
if contour_area > self.contour_area.value:
x, y, w, h = cv2.boundingRect(c)
motion_boxes.append(
(
int(x * self.resize_factor),
int(y * self.resize_factor),
int((x + w) * self.resize_factor),
int((y + h) * self.resize_factor),
)
)
pct_motion = total_contour_area / (
self.motion_frame_size[0] * self.motion_frame_size[1]
)
# once the motion drops to less than 1% for the first time, assume its calibrated
if pct_motion < 0.01:
self.calibrating = False
# if calibrating or the motion contours are > 80% of the image area (lightning, ir, ptz) recalibrate
if self.calibrating or pct_motion > self.config.lightning_threshold:
motion_boxes = []
self.calibrating = True
if self.save_images:
thresh_dilated = cv2.cvtColor(thresh_dilated, cv2.COLOR_GRAY2BGR)
for b in motion_boxes:
cv2.rectangle(
thresh_dilated,
(int(b[0] / self.resize_factor), int(b[1] / self.resize_factor)),
(int(b[2] / self.resize_factor), int(b[3] / self.resize_factor)),
(0, 0, 255),
2,
)
cv2.imwrite(
f"debug/frames/improved-{self.frame_counter}.jpg", thresh_dilated
)
if len(motion_boxes) > 0:
self.motion_frame_count += 1
if self.motion_frame_count >= 10:
# only average in the current frame if the difference persists for a bit
cv2.accumulateWeighted(
resized_frame,
self.avg_frame,
0.2 if self.calibrating else self.config.frame_alpha,
)
else:
# when no motion, just keep averaging the frames together
cv2.accumulateWeighted(
resized_frame,
self.avg_frame,
0.2 if self.calibrating else self.config.frame_alpha,
)
self.motion_frame_count = 0
return motion_boxes

View File

@ -758,7 +758,7 @@ class TestConfig(unittest.TestCase):
assert config == frigate_config.dict(exclude_unset=True) assert config == frigate_config.dict(exclude_unset=True)
runtime_config = frigate_config.runtime_config() runtime_config = frigate_config.runtime_config()
assert round(runtime_config.cameras["back"].motion.contour_area) == 30 assert round(runtime_config.cameras["back"].motion.contour_area) == 15
def test_merge_labelmap(self): def test_merge_labelmap(self):
config = { config = {

178
frigate/test/test_video.py Normal file
View File

@ -0,0 +1,178 @@
import unittest
import cv2
import numpy as np
from norfair.drawing.color import Palette
from norfair.drawing.drawer import Drawer
from frigate.video import (
get_cluster_boundary,
get_cluster_candidates,
get_cluster_region,
)
def draw_box(frame, box, color=(255, 0, 0), thickness=2):
cv2.rectangle(
frame,
(box[0], box[1]),
(box[2], box[3]),
color,
thickness,
)
def save_clusters_image(name, boxes, candidates, regions=[]):
canvas = np.zeros((1000, 2000, 3), np.uint8)
for cluster in candidates:
color = Palette.choose_color(np.random.rand())
for b in cluster:
box = boxes[b]
draw_box(canvas, box, color, 2)
# bottom right
text_anchor = (
box[2],
box[3],
)
canvas = Drawer.text(
canvas,
str(b),
position=text_anchor,
size=None,
color=(255, 255, 255),
thickness=None,
)
for r in regions:
draw_box(canvas, r, (0, 255, 0), 2)
cv2.imwrite(
f"debug/frames/{name}.jpg",
canvas,
)
def save_cluster_boundary_image(name, boxes, bounding_boxes):
canvas = np.zeros((1000, 2000, 3), np.uint8)
color = Palette.choose_color(np.random.rand())
for box in boxes:
draw_box(canvas, box, color, 2)
for bound in bounding_boxes:
draw_box(canvas, bound, (0, 255, 0), 2)
cv2.imwrite(
f"debug/frames/{name}.jpg",
canvas,
)
class TestConfig(unittest.TestCase):
def setUp(self):
self.frame_shape = (1000, 2000)
self.min_region_size = 160
def test_cluster_candidates(self):
boxes = [(100, 100, 200, 200), (202, 150, 252, 200), (900, 900, 950, 950)]
cluster_candidates = get_cluster_candidates(
self.frame_shape, self.min_region_size, boxes
)
# save_clusters_image("cluster_candidates", boxes, cluster_candidates)
assert len(cluster_candidates) == 2
def test_cluster_boundary(self):
boxes = [(100, 100, 200, 200), (215, 215, 325, 325)]
boundary_boxes = [
get_cluster_boundary(box, self.min_region_size) for box in boxes
]
# save_cluster_boundary_image("bound", boxes, boundary_boxes)
assert len(boundary_boxes) == 2
def test_cluster_regions(self):
boxes = [(100, 100, 200, 200), (202, 150, 252, 200), (900, 900, 950, 950)]
cluster_candidates = get_cluster_candidates(
self.frame_shape, self.min_region_size, boxes
)
regions = [
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
for candidate in cluster_candidates
]
# save_clusters_image("regions", boxes, cluster_candidates, regions)
assert len(regions) == 2
def test_box_too_small_for_cluster(self):
boxes = [(100, 100, 600, 600), (655, 100, 700, 145)]
cluster_candidates = get_cluster_candidates(
self.frame_shape, self.min_region_size, boxes
)
regions = [
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
for candidate in cluster_candidates
]
save_clusters_image("too_small", boxes, cluster_candidates, regions)
assert len(cluster_candidates) == 2
assert len(regions) == 2
def test_redundant_clusters(self):
boxes = [(100, 100, 200, 200), (305, 305, 415, 415)]
cluster_candidates = get_cluster_candidates(
self.frame_shape, self.min_region_size, boxes
)
regions = [
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
for candidate in cluster_candidates
]
# save_clusters_image("redundant", boxes, cluster_candidates, regions)
assert len(cluster_candidates) == 2
assert all([len(c) == 1 for c in cluster_candidates])
assert len(regions) == 2
def test_combine_boxes(self):
boxes = [
(460, 0, 561, 144),
(565, 0, 586, 71),
]
# boundary_boxes = [get_cluster_boundary(box) for box in boxes]
# save_cluster_boundary_image("combine_bound", boxes, boundary_boxes)
cluster_candidates = get_cluster_candidates(
self.frame_shape, self.min_region_size, boxes
)
regions = [
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
for candidate in cluster_candidates
]
# save_clusters_image("combine", boxes, cluster_candidates, regions)
assert len(regions) == 1
def test_dont_combine_boxes(self):
boxes = [(460, 0, 532, 129), (586, 0, 606, 46)]
# boundary_boxes = [get_cluster_boundary(box) for box in boxes]
# save_cluster_boundary_image("dont_combine_bound", boxes, boundary_boxes)
cluster_candidates = get_cluster_candidates(
self.frame_shape, self.min_region_size, boxes
)
regions = [
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
for candidate in cluster_candidates
]
# save_clusters_image("dont_combine", boxes, cluster_candidates, regions)
assert len(regions) == 2

View File

@ -231,16 +231,32 @@ class NorfairTracker(ObjectTracker):
# update or create new tracks # update or create new tracks
active_ids = [] active_ids = []
for t in tracked_objects: for t in tracked_objects:
estimate = tuple(t.estimate.flatten().astype(int))
# keep the estimate within the bounds of the image
estimate = (
max(0, estimate[0]),
max(0, estimate[1]),
min(self.detect_config.width - 1, estimate[2]),
min(self.detect_config.height - 1, estimate[3]),
)
obj = {
**t.last_detection.data,
"estimate": estimate,
}
active_ids.append(t.global_id) active_ids.append(t.global_id)
if t.global_id not in self.track_id_map: if t.global_id not in self.track_id_map:
self.register(t.global_id, t.last_detection.data) self.register(t.global_id, obj)
# if there wasn't a detection in this frame, increment disappeared # if there wasn't a detection in this frame, increment disappeared
elif t.last_detection.data["frame_time"] != frame_time: elif t.last_detection.data["frame_time"] != frame_time:
id = self.track_id_map[t.global_id] id = self.track_id_map[t.global_id]
self.disappeared[id] += 1 self.disappeared[id] += 1
# sometimes the estimate gets way off
# only update if the upper left corner is actually upper left
if estimate[0] < estimate[2] and estimate[1] < estimate[3]:
self.tracked_objects[id]["estimate"] = obj["estimate"]
# else update it # else update it
else: else:
self.update(t.global_id, t.last_detection.data) self.update(t.global_id, obj)
# clear expired tracks # clear expired tracks
expired_ids = [k for k in self.track_id_map.keys() if k not in active_ids] expired_ids = [k for k in self.track_id_map.keys() if k not in active_ids]

View File

@ -1,9 +1,9 @@
import datetime import datetime
import logging import logging
import math
import multiprocessing as mp import multiprocessing as mp
import os import os
import queue import queue
import random
import signal import signal
import subprocess as sp import subprocess as sp
import threading import threading
@ -18,6 +18,7 @@ from frigate.config import CameraConfig, DetectConfig, PixelFormatEnum
from frigate.const import CACHE_DIR from frigate.const import CACHE_DIR
from frigate.log import LogPipe from frigate.log import LogPipe
from frigate.motion import MotionDetector from frigate.motion import MotionDetector
from frigate.motion.improved_motion import ImprovedMotionDetector
from frigate.object_detection import RemoteObjectDetector from frigate.object_detection import RemoteObjectDetector
from frigate.track import ObjectTracker from frigate.track import ObjectTracker
from frigate.track.norfair_tracker import NorfairTracker from frigate.track.norfair_tracker import NorfairTracker
@ -27,7 +28,7 @@ from frigate.util import (
SharedMemoryFrameManager, SharedMemoryFrameManager,
area, area,
calculate_region, calculate_region,
clipped, draw_box_with_label,
intersection, intersection,
intersection_over_union, intersection_over_union,
listen, listen,
@ -462,9 +463,10 @@ def track_camera(
objects_to_track = config.objects.track objects_to_track = config.objects.track
object_filters = config.objects.filters object_filters = config.objects.filters
motion_detector = MotionDetector( motion_detector = ImprovedMotionDetector(
frame_shape, frame_shape,
config.motion, config.motion,
config.detect.fps,
improve_contrast_enabled, improve_contrast_enabled,
motion_threshold, motion_threshold,
motion_contour_area, motion_contour_area,
@ -505,6 +507,13 @@ def box_overlaps(b1, b2):
return True return True
def box_inside(b1, b2):
# check if b2 is inside b1
if b2[0] >= b1[0] and b2[1] >= b1[1] and b2[2] <= b1[2] and b2[3] <= b1[3]:
return True
return False
def reduce_boxes(boxes, iou_threshold=0.0): def reduce_boxes(boxes, iou_threshold=0.0):
clusters = [] clusters = []
@ -575,6 +584,91 @@ def detect(
return detections return detections
def get_cluster_boundary(box, min_region):
# compute the max region size for the current box (box is 10% of region)
box_width = box[2] - box[0]
box_height = box[3] - box[1]
max_region_area = abs(box_width * box_height) / 0.1
max_region_size = max(min_region, int(math.sqrt(max_region_area)))
centroid = (box_width / 2 + box[0], box_height / 2 + box[1])
max_x_dist = int(max_region_size - box_width / 2 * 1.1)
max_y_dist = int(max_region_size - box_height / 2 * 1.1)
return [
int(centroid[0] - max_x_dist),
int(centroid[1] - max_y_dist),
int(centroid[0] + max_x_dist),
int(centroid[1] + max_y_dist),
]
def get_cluster_candidates(frame_shape, min_region, boxes):
# and create a cluster of other boxes using it's max region size
# only include boxes where the region is an appropriate(except the region could possibly be smaller?)
# size in the cluster. in order to be in the cluster, the furthest corner needs to be within x,y offset
# determined by the max_region size minus half the box + 20%
# TODO: see if we can do this with numpy
cluster_candidates = []
used_boxes = []
# loop over each box
for current_index, b in enumerate(boxes):
if current_index in used_boxes:
continue
cluster = [current_index]
used_boxes.append(current_index)
cluster_boundary = get_cluster_boundary(b, min_region)
# find all other boxes that fit inside the boundary
for compare_index, compare_box in enumerate(boxes):
if compare_index in used_boxes:
continue
# if the box is not inside the potential cluster area, cluster them
if not box_inside(cluster_boundary, compare_box):
continue
# get the region if you were to add this box to the cluster
potential_cluster = cluster + [compare_index]
cluster_region = get_cluster_region(
frame_shape, min_region, potential_cluster, boxes
)
# if region could be smaller and either box would be too small
# for the resulting region, dont cluster
should_cluster = True
if (cluster_region[2] - cluster_region[0]) > min_region:
for b in potential_cluster:
box = boxes[b]
# boxes should be more than 5% of the area of the region
if area(box) / area(cluster_region) < 0.05:
should_cluster = False
break
if should_cluster:
cluster.append(compare_index)
used_boxes.append(compare_index)
cluster_candidates.append(cluster)
# return the unique clusters only
unique = {tuple(sorted(c)) for c in cluster_candidates}
return [list(tup) for tup in unique]
def get_cluster_region(frame_shape, min_region, cluster, boxes):
min_x = frame_shape[1]
min_y = frame_shape[0]
max_x = 0
max_y = 0
for b in cluster:
min_x = min(boxes[b][0], min_x)
min_y = min(boxes[b][1], min_y)
max_x = max(boxes[b][2], max_x)
max_y = max(boxes[b][3], max_y)
return calculate_region(
frame_shape, min_x, min_y, max_x, max_y, min_region, multiplier=1.2
)
def process_frames( def process_frames(
camera_name: str, camera_name: str,
frame_queue: mp.Queue, frame_queue: mp.Queue,
@ -603,6 +697,8 @@ def process_frames(
startup_scan_counter = 0 startup_scan_counter = 0
region_min_size = int(max(model_config.height, model_config.width) / 2)
while not stop_event.is_set(): while not stop_event.is_set():
if exit_on_empty and frame_queue.empty(): if exit_on_empty and frame_queue.empty():
logger.info("Exiting track_objects...") logger.info("Exiting track_objects...")
@ -654,35 +750,22 @@ def process_frames(
# get tracked object boxes that aren't stationary # get tracked object boxes that aren't stationary
tracked_object_boxes = [ tracked_object_boxes = [
obj["box"] obj["estimate"]
for obj in object_tracker.tracked_objects.values() for obj in object_tracker.tracked_objects.values()
if obj["id"] not in stationary_object_ids if obj["id"] not in stationary_object_ids
] ]
# combine motion boxes with known locations of existing objects combined_boxes = motion_boxes + tracked_object_boxes
combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes)
region_min_size = max(model_config.height, model_config.width) cluster_candidates = get_cluster_candidates(
# compute regions frame_shape, region_min_size, combined_boxes
regions = [ )
calculate_region(
frame_shape,
a[0],
a[1],
a[2],
a[3],
region_min_size,
multiplier=random.uniform(1.2, 1.5),
)
for a in combined_boxes
]
# consolidate regions with heavy overlap
regions = [ regions = [
calculate_region( get_cluster_region(
frame_shape, a[0], a[1], a[2], a[3], region_min_size, multiplier=1.0 frame_shape, region_min_size, candidate, combined_boxes
) )
for a in reduce_boxes(regions, 0.4) for candidate in cluster_candidates
] ]
# if starting up, get the next startup scan region # if starting up, get the next startup scan region
@ -733,74 +816,38 @@ def process_frames(
) )
######### #########
# merge objects, check for clipped objects and look again up to 4 times # merge objects
######### #########
refining = len(regions) > 0 # group by name
refine_count = 0 detected_object_groups = defaultdict(lambda: [])
while refining and refine_count < 4: for detection in detections:
refining = False detected_object_groups[detection[0]].append(detection)
# group by name selected_objects = []
detected_object_groups = defaultdict(lambda: []) for group in detected_object_groups.values():
for detection in detections: # apply non-maxima suppression to suppress weak, overlapping bounding boxes
detected_object_groups[detection[0]].append(detection) # o[2] is the box of the object: xmin, ymin, xmax, ymax
# apply max/min to ensure values do not exceed the known frame size
boxes = [
(
o[2][0],
o[2][1],
o[2][2] - o[2][0],
o[2][3] - o[2][1],
)
for o in group
]
confidences = [o[1] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
selected_objects = [] # add objects
for group in detected_object_groups.values(): for index in idxs:
# apply non-maxima suppression to suppress weak, overlapping bounding boxes index = index if isinstance(index, np.int32) else index[0]
# o[2] is the box of the object: xmin, ymin, xmax, ymax obj = group[index]
# apply max/min to ensure values do not exceed the known frame size selected_objects.append(obj)
boxes = [
(
o[2][0],
o[2][1],
o[2][2] - o[2][0],
o[2][3] - o[2][1],
)
for o in group
]
confidences = [o[1] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for index in idxs: # set the detections list to only include top objects
index = index if isinstance(index, np.int32) else index[0] detections = selected_objects
obj = group[index]
if clipped(obj, frame_shape):
box = obj[2]
# calculate a new region that will hopefully get the entire object
region = calculate_region(
frame_shape,
box[0],
box[1],
box[2],
box[3],
region_min_size,
)
regions.append(region)
selected_objects.extend(
detect(
detect_config,
object_detector,
frame,
model_config,
region,
objects_to_track,
object_filters,
)
)
refining = True
else:
selected_objects.append(obj)
# set the detections list to only include top, complete objects
# and new detections
detections = selected_objects
if refining:
refine_count += 1
## drop detections that overlap too much ## drop detections that overlap too much
consolidated_detections = [] consolidated_detections = []
@ -848,7 +895,7 @@ def process_frames(
else: else:
object_tracker.update_frame_times(frame_time) object_tracker.update_frame_times(frame_time)
# debug tracking by writing frames # debug object tracking
if False: if False:
bgr_frame = cv2.cvtColor( bgr_frame = cv2.cvtColor(
frame, frame,
@ -858,7 +905,67 @@ def process_frames(
cv2.imwrite( cv2.imwrite(
f"debug/frames/track-{'{:.6f}'.format(frame_time)}.jpg", bgr_frame f"debug/frames/track-{'{:.6f}'.format(frame_time)}.jpg", bgr_frame
) )
# debug
if False:
bgr_frame = cv2.cvtColor(
frame,
cv2.COLOR_YUV2BGR_I420,
)
for m_box in motion_boxes:
cv2.rectangle(
bgr_frame,
(m_box[0], m_box[1]),
(m_box[2], m_box[3]),
(0, 0, 255),
2,
)
for b in tracked_object_boxes:
cv2.rectangle(
bgr_frame,
(b[0], b[1]),
(b[2], b[3]),
(255, 0, 0),
2,
)
for obj in object_tracker.tracked_objects.values():
if obj["frame_time"] == frame_time:
thickness = 2
color = model_config.colormap[obj["label"]]
else:
thickness = 1
color = (255, 0, 0)
# draw the bounding boxes on the frame
box = obj["box"]
draw_box_with_label(
bgr_frame,
box[0],
box[1],
box[2],
box[3],
obj["label"],
obj["id"],
thickness=thickness,
color=color,
)
for region in regions:
cv2.rectangle(
bgr_frame,
(region[0], region[1]),
(region[2], region[3]),
(0, 255, 0),
2,
)
cv2.imwrite(
f"debug/frames/{camera_name}-{'{:.6f}'.format(frame_time)}.jpg",
bgr_frame,
)
# add to the queue if not full # add to the queue if not full
if detected_objects_queue.full(): if detected_objects_queue.full():
frame_manager.delete(f"{camera_name}{frame_time}") frame_manager.delete(f"{camera_name}{frame_time}")