mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
Improve motion detection and region selection (#6741)
* refactor existing motion detector * implement and use cnt bgsub * pass fps to motion detector * create a simplified motion detector * lightning detection * update default motion config * lint imports * use estimated boxes for regions * use improved motion detector * update test * use a different strategy for clustering motion and object boxes * increase alpha during calibration * simplify object consolidation * add some reasonable constraints to the estimated box * adjust cluster boundary to 10% * refactor * add disabled debug code * fix variable scope
This commit is contained in:
parent
32569842d3
commit
d81dd60fef
103
benchmark_motion.py
Normal file
103
benchmark_motion.py
Normal file
@ -0,0 +1,103 @@
|
||||
import datetime
|
||||
import multiprocessing as mp
|
||||
import os
|
||||
from statistics import mean
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from frigate.config import MotionConfig
|
||||
from frigate.motion.frigate_motion import FrigateMotionDetector
|
||||
from frigate.motion.improved_motion import ImprovedMotionDetector
|
||||
|
||||
# get info on the video
|
||||
# cap = cv2.VideoCapture("debug/front_cam_2023_05_23_08_41__2023_05_23_08_43.mp4")
|
||||
# cap = cv2.VideoCapture("debug/motion_test_clips/rain_1.mp4")
|
||||
cap = cv2.VideoCapture("debug/motion_test_clips/ir_off.mp4")
|
||||
# cap = cv2.VideoCapture("airport.mp4")
|
||||
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
fps = cap.get(cv2.CAP_PROP_FPS)
|
||||
frame_shape = (height, width, 3)
|
||||
|
||||
# create the motion config
|
||||
motion_config = MotionConfig()
|
||||
motion_config.mask = np.zeros((height, width), np.uint8)
|
||||
motion_config.mask[:] = 255
|
||||
motion_config.improve_contrast = 1
|
||||
motion_config.frame_alpha = 0.02
|
||||
motion_config.threshold = 40
|
||||
motion_config.contour_area = 15
|
||||
save_images = True
|
||||
|
||||
# create motion detectors
|
||||
frigate_motion_detector = FrigateMotionDetector(
|
||||
frame_shape=frame_shape,
|
||||
config=motion_config,
|
||||
fps=fps,
|
||||
improve_contrast=mp.Value("i", motion_config.improve_contrast),
|
||||
threshold=mp.Value("i", motion_config.threshold),
|
||||
contour_area=mp.Value("i", motion_config.contour_area),
|
||||
)
|
||||
frigate_motion_detector.save_images = save_images
|
||||
|
||||
improved_motion_detector = ImprovedMotionDetector(
|
||||
frame_shape=frame_shape,
|
||||
config=motion_config,
|
||||
fps=fps,
|
||||
improve_contrast=mp.Value("i", motion_config.improve_contrast),
|
||||
threshold=mp.Value("i", motion_config.threshold),
|
||||
contour_area=mp.Value("i", motion_config.contour_area),
|
||||
)
|
||||
improved_motion_detector.save_images = save_images
|
||||
|
||||
# read and process frames
|
||||
frame_times = {"frigate": [], "improved": []}
|
||||
ret, frame = cap.read()
|
||||
frame_counter = 1
|
||||
while ret:
|
||||
yuv_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2YUV_I420)
|
||||
|
||||
start_frame = datetime.datetime.now().timestamp()
|
||||
frigate_motion_detector.detect(yuv_frame)
|
||||
frame_times["frigate"].append(datetime.datetime.now().timestamp() - start_frame)
|
||||
|
||||
start_frame = datetime.datetime.now().timestamp()
|
||||
improved_motion_detector.detect(yuv_frame)
|
||||
frame_times["improved"].append(datetime.datetime.now().timestamp() - start_frame)
|
||||
|
||||
frigate_frame = f"debug/frames/frigate-{frame_counter}.jpg"
|
||||
improved_frame = f"debug/frames/improved-{frame_counter}.jpg"
|
||||
if os.path.exists(frigate_frame) and os.path.exists(improved_frame):
|
||||
image_row_1 = cv2.hconcat(
|
||||
[
|
||||
cv2.imread(frigate_frame),
|
||||
cv2.imread(improved_frame),
|
||||
]
|
||||
)
|
||||
|
||||
image_row_2 = cv2.resize(
|
||||
frame,
|
||||
dsize=(
|
||||
frigate_motion_detector.motion_frame_size[1] * 2,
|
||||
frigate_motion_detector.motion_frame_size[0] * 2,
|
||||
),
|
||||
interpolation=cv2.INTER_LINEAR,
|
||||
)
|
||||
|
||||
cv2.imwrite(
|
||||
f"debug/frames/all-{frame_counter}.jpg",
|
||||
cv2.vconcat([image_row_1, image_row_2]),
|
||||
)
|
||||
os.unlink(frigate_frame)
|
||||
os.unlink(improved_frame)
|
||||
frame_counter += 1
|
||||
|
||||
ret, frame = cap.read()
|
||||
|
||||
cap.release()
|
||||
|
||||
print("Frigate Motion Detector")
|
||||
print(f"Average frame processing time: {mean(frame_times['frigate'])*1000:.2f}ms")
|
||||
print("Improved Motion Detector")
|
||||
print(f"Average frame processing time: {mean(frame_times['improved'])*1000:.2f}ms")
|
@ -261,27 +261,29 @@ motion:
|
||||
# Optional: The threshold passed to cv2.threshold to determine if a pixel is different enough to be counted as motion. (default: shown below)
|
||||
# Increasing this value will make motion detection less sensitive and decreasing it will make motion detection more sensitive.
|
||||
# The value should be between 1 and 255.
|
||||
threshold: 25
|
||||
# Optional: Minimum size in pixels in the resized motion image that counts as motion (default: 30)
|
||||
threshold: 40
|
||||
# Optional: The percentage of the image used to detect lightning or other substantial changes where motion detection
|
||||
# needs to recalibrate. (default: shown below)
|
||||
# Increasing this value will make motion detection more likely to consider lightning or ir mode changes as valid motion.
|
||||
# Decreasing this value will make motion detection more likely to ignore large amounts of motion such as a person approaching
|
||||
# a doorbell camera.
|
||||
lightning_threshold: 0.8
|
||||
# Optional: Minimum size in pixels in the resized motion image that counts as motion (default: shown below)
|
||||
# Increasing this value will prevent smaller areas of motion from being detected. Decreasing will
|
||||
# make motion detection more sensitive to smaller moving objects.
|
||||
# As a rule of thumb:
|
||||
# - 15 - high sensitivity
|
||||
# - 30 - medium sensitivity
|
||||
# - 50 - low sensitivity
|
||||
contour_area: 30
|
||||
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging the motion delta across multiple frames (default: shown below)
|
||||
# Higher values mean the current frame impacts the delta a lot, and a single raindrop may register as motion.
|
||||
# Too low and a fast moving person wont be detected as motion.
|
||||
delta_alpha: 0.2
|
||||
contour_area: 15
|
||||
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging frames to determine the background (default: shown below)
|
||||
# Higher values mean the current frame impacts the average a lot, and a new object will be averaged into the background faster.
|
||||
# Low values will cause things like moving shadows to be detected as motion for longer.
|
||||
# https://www.geeksforgeeks.org/background-subtraction-in-an-image-using-concept-of-running-average/
|
||||
frame_alpha: 0.2
|
||||
frame_alpha: 0.02
|
||||
# Optional: Height of the resized motion frame (default: 50)
|
||||
# This operates as an efficient blur alternative. Higher values will result in more granular motion detection at the expense
|
||||
# of higher CPU usage. Lower values result in less CPU, but small changes may not register as motion.
|
||||
# Higher values will result in more granular motion detection at the expense of higher CPU usage.
|
||||
# Lower values result in less CPU, but small changes may not register as motion.
|
||||
frame_height: 50
|
||||
# Optional: motion mask
|
||||
# NOTE: see docs for more detailed info on creating masks
|
||||
@ -289,7 +291,7 @@ motion:
|
||||
# Optional: improve contrast (default: shown below)
|
||||
# Enables dynamic contrast improvement. This should help improve night detections at the cost of making motion detection more sensitive
|
||||
# for daytime.
|
||||
improve_contrast: False
|
||||
improve_contrast: True
|
||||
# Optional: Delay when updating camera motion through MQTT from ON -> OFF (default: shown below).
|
||||
mqtt_off_delay: 30
|
||||
|
||||
|
@ -189,15 +189,18 @@ class RecordConfig(FrigateBaseModel):
|
||||
|
||||
class MotionConfig(FrigateBaseModel):
|
||||
threshold: int = Field(
|
||||
default=25,
|
||||
default=40,
|
||||
title="Motion detection threshold (1-255).",
|
||||
ge=1,
|
||||
le=255,
|
||||
)
|
||||
improve_contrast: bool = Field(default=False, title="Improve Contrast")
|
||||
contour_area: Optional[int] = Field(default=30, title="Contour Area")
|
||||
lightning_threshold: float = Field(
|
||||
default=0.8, title="Lightning detection threshold (0.3-1.0).", ge=0.3, le=1.0
|
||||
)
|
||||
improve_contrast: bool = Field(default=True, title="Improve Contrast")
|
||||
contour_area: Optional[int] = Field(default=15, title="Contour Area")
|
||||
delta_alpha: float = Field(default=0.2, title="Delta Alpha")
|
||||
frame_alpha: float = Field(default=0.2, title="Frame Alpha")
|
||||
frame_alpha: float = Field(default=0.02, title="Frame Alpha")
|
||||
frame_height: Optional[int] = Field(default=50, title="Frame Height")
|
||||
mask: Union[str, List[str]] = Field(
|
||||
default="", title="Coordinates polygon for the motion mask."
|
||||
|
22
frigate/motion/__init__.py
Normal file
22
frigate/motion/__init__.py
Normal file
@ -0,0 +1,22 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Tuple
|
||||
|
||||
from frigate.config import MotionConfig
|
||||
|
||||
|
||||
class MotionDetector(ABC):
|
||||
@abstractmethod
|
||||
def __init__(
|
||||
self,
|
||||
frame_shape: Tuple[int, int, int],
|
||||
config: MotionConfig,
|
||||
fps: int,
|
||||
improve_contrast,
|
||||
threshold,
|
||||
contour_area,
|
||||
):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def detect(self, frame):
|
||||
pass
|
@ -3,16 +3,18 @@ import imutils
|
||||
import numpy as np
|
||||
|
||||
from frigate.config import MotionConfig
|
||||
from frigate.motion import MotionDetector
|
||||
|
||||
|
||||
class MotionDetector:
|
||||
class FrigateMotionDetector(MotionDetector):
|
||||
def __init__(
|
||||
self,
|
||||
frame_shape,
|
||||
config: MotionConfig,
|
||||
improve_contrast_enabled,
|
||||
motion_threshold,
|
||||
motion_contour_area,
|
||||
fps: int,
|
||||
improve_contrast,
|
||||
threshold,
|
||||
contour_area,
|
||||
):
|
||||
self.config = config
|
||||
self.frame_shape = frame_shape
|
||||
@ -32,9 +34,9 @@ class MotionDetector:
|
||||
)
|
||||
self.mask = np.where(resized_mask == [0])
|
||||
self.save_images = False
|
||||
self.improve_contrast = improve_contrast_enabled
|
||||
self.threshold = motion_threshold
|
||||
self.contour_area = motion_contour_area
|
||||
self.improve_contrast = improve_contrast
|
||||
self.threshold = threshold
|
||||
self.contour_area = contour_area
|
||||
|
||||
def detect(self, frame):
|
||||
motion_boxes = []
|
||||
@ -130,18 +132,10 @@ class MotionDetector:
|
||||
(0, 0, 255),
|
||||
2,
|
||||
)
|
||||
# print("--------")
|
||||
image_row_1 = cv2.hconcat(
|
||||
[
|
||||
cv2.cvtColor(frameDelta, cv2.COLOR_GRAY2BGR),
|
||||
cv2.cvtColor(avg_delta_image, cv2.COLOR_GRAY2BGR),
|
||||
]
|
||||
|
||||
cv2.imwrite(
|
||||
f"debug/frames/frigate-{self.frame_counter}.jpg", thresh_dilated
|
||||
)
|
||||
image_row_2 = cv2.hconcat(
|
||||
[cv2.cvtColor(thresh, cv2.COLOR_GRAY2BGR), thresh_dilated]
|
||||
)
|
||||
combined_image = cv2.vconcat([image_row_1, image_row_2])
|
||||
cv2.imwrite(f"motion/motion-{self.frame_counter}.jpg", combined_image)
|
||||
|
||||
if len(motion_boxes) > 0:
|
||||
self.motion_frame_count += 1
|
143
frigate/motion/improved_motion.py
Normal file
143
frigate/motion/improved_motion.py
Normal file
@ -0,0 +1,143 @@
|
||||
import cv2
|
||||
import imutils
|
||||
import numpy as np
|
||||
|
||||
from frigate.config import MotionConfig
|
||||
from frigate.motion import MotionDetector
|
||||
|
||||
|
||||
class ImprovedMotionDetector(MotionDetector):
|
||||
def __init__(
|
||||
self,
|
||||
frame_shape,
|
||||
config: MotionConfig,
|
||||
fps: int,
|
||||
improve_contrast,
|
||||
threshold,
|
||||
contour_area,
|
||||
):
|
||||
self.config = config
|
||||
self.frame_shape = frame_shape
|
||||
self.resize_factor = frame_shape[0] / config.frame_height
|
||||
self.motion_frame_size = (
|
||||
config.frame_height,
|
||||
config.frame_height * frame_shape[1] // frame_shape[0],
|
||||
)
|
||||
self.avg_frame = np.zeros(self.motion_frame_size, np.float32)
|
||||
self.avg_delta = np.zeros(self.motion_frame_size, np.float32)
|
||||
self.motion_frame_count = 0
|
||||
self.frame_counter = 0
|
||||
resized_mask = cv2.resize(
|
||||
config.mask,
|
||||
dsize=(self.motion_frame_size[1], self.motion_frame_size[0]),
|
||||
interpolation=cv2.INTER_LINEAR,
|
||||
)
|
||||
self.mask = np.where(resized_mask == [0])
|
||||
self.save_images = False
|
||||
self.calibrating = True
|
||||
self.improve_contrast = improve_contrast
|
||||
self.threshold = threshold
|
||||
self.contour_area = contour_area
|
||||
|
||||
def detect(self, frame):
|
||||
motion_boxes = []
|
||||
|
||||
gray = frame[0 : self.frame_shape[0], 0 : self.frame_shape[1]]
|
||||
|
||||
# resize frame
|
||||
resized_frame = cv2.resize(
|
||||
gray,
|
||||
dsize=(self.motion_frame_size[1], self.motion_frame_size[0]),
|
||||
interpolation=cv2.INTER_LINEAR,
|
||||
)
|
||||
|
||||
resized_frame = cv2.GaussianBlur(resized_frame, (3, 3), cv2.BORDER_DEFAULT)
|
||||
|
||||
# Improve contrast
|
||||
if self.improve_contrast.value:
|
||||
resized_frame = cv2.equalizeHist(resized_frame)
|
||||
|
||||
# mask frame
|
||||
resized_frame[self.mask] = [255]
|
||||
|
||||
if self.save_images or self.calibrating:
|
||||
self.frame_counter += 1
|
||||
# compare to average
|
||||
frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame))
|
||||
|
||||
# compute the threshold image for the current frame
|
||||
thresh = cv2.threshold(
|
||||
frameDelta, self.threshold.value, 255, cv2.THRESH_BINARY
|
||||
)[1]
|
||||
|
||||
# dilate the thresholded image to fill in holes, then find contours
|
||||
# on thresholded image
|
||||
thresh_dilated = cv2.dilate(thresh, None, iterations=1)
|
||||
cnts = cv2.findContours(
|
||||
thresh_dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
||||
)
|
||||
cnts = imutils.grab_contours(cnts)
|
||||
|
||||
# loop over the contours
|
||||
total_contour_area = 0
|
||||
for c in cnts:
|
||||
# if the contour is big enough, count it as motion
|
||||
contour_area = cv2.contourArea(c)
|
||||
total_contour_area += contour_area
|
||||
if contour_area > self.contour_area.value:
|
||||
x, y, w, h = cv2.boundingRect(c)
|
||||
motion_boxes.append(
|
||||
(
|
||||
int(x * self.resize_factor),
|
||||
int(y * self.resize_factor),
|
||||
int((x + w) * self.resize_factor),
|
||||
int((y + h) * self.resize_factor),
|
||||
)
|
||||
)
|
||||
|
||||
pct_motion = total_contour_area / (
|
||||
self.motion_frame_size[0] * self.motion_frame_size[1]
|
||||
)
|
||||
|
||||
# once the motion drops to less than 1% for the first time, assume its calibrated
|
||||
if pct_motion < 0.01:
|
||||
self.calibrating = False
|
||||
|
||||
# if calibrating or the motion contours are > 80% of the image area (lightning, ir, ptz) recalibrate
|
||||
if self.calibrating or pct_motion > self.config.lightning_threshold:
|
||||
motion_boxes = []
|
||||
self.calibrating = True
|
||||
|
||||
if self.save_images:
|
||||
thresh_dilated = cv2.cvtColor(thresh_dilated, cv2.COLOR_GRAY2BGR)
|
||||
for b in motion_boxes:
|
||||
cv2.rectangle(
|
||||
thresh_dilated,
|
||||
(int(b[0] / self.resize_factor), int(b[1] / self.resize_factor)),
|
||||
(int(b[2] / self.resize_factor), int(b[3] / self.resize_factor)),
|
||||
(0, 0, 255),
|
||||
2,
|
||||
)
|
||||
cv2.imwrite(
|
||||
f"debug/frames/improved-{self.frame_counter}.jpg", thresh_dilated
|
||||
)
|
||||
|
||||
if len(motion_boxes) > 0:
|
||||
self.motion_frame_count += 1
|
||||
if self.motion_frame_count >= 10:
|
||||
# only average in the current frame if the difference persists for a bit
|
||||
cv2.accumulateWeighted(
|
||||
resized_frame,
|
||||
self.avg_frame,
|
||||
0.2 if self.calibrating else self.config.frame_alpha,
|
||||
)
|
||||
else:
|
||||
# when no motion, just keep averaging the frames together
|
||||
cv2.accumulateWeighted(
|
||||
resized_frame,
|
||||
self.avg_frame,
|
||||
0.2 if self.calibrating else self.config.frame_alpha,
|
||||
)
|
||||
self.motion_frame_count = 0
|
||||
|
||||
return motion_boxes
|
@ -758,7 +758,7 @@ class TestConfig(unittest.TestCase):
|
||||
assert config == frigate_config.dict(exclude_unset=True)
|
||||
|
||||
runtime_config = frigate_config.runtime_config()
|
||||
assert round(runtime_config.cameras["back"].motion.contour_area) == 30
|
||||
assert round(runtime_config.cameras["back"].motion.contour_area) == 15
|
||||
|
||||
def test_merge_labelmap(self):
|
||||
config = {
|
||||
|
178
frigate/test/test_video.py
Normal file
178
frigate/test/test_video.py
Normal file
@ -0,0 +1,178 @@
|
||||
import unittest
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from norfair.drawing.color import Palette
|
||||
from norfair.drawing.drawer import Drawer
|
||||
|
||||
from frigate.video import (
|
||||
get_cluster_boundary,
|
||||
get_cluster_candidates,
|
||||
get_cluster_region,
|
||||
)
|
||||
|
||||
|
||||
def draw_box(frame, box, color=(255, 0, 0), thickness=2):
|
||||
cv2.rectangle(
|
||||
frame,
|
||||
(box[0], box[1]),
|
||||
(box[2], box[3]),
|
||||
color,
|
||||
thickness,
|
||||
)
|
||||
|
||||
|
||||
def save_clusters_image(name, boxes, candidates, regions=[]):
|
||||
canvas = np.zeros((1000, 2000, 3), np.uint8)
|
||||
for cluster in candidates:
|
||||
color = Palette.choose_color(np.random.rand())
|
||||
for b in cluster:
|
||||
box = boxes[b]
|
||||
draw_box(canvas, box, color, 2)
|
||||
# bottom right
|
||||
text_anchor = (
|
||||
box[2],
|
||||
box[3],
|
||||
)
|
||||
canvas = Drawer.text(
|
||||
canvas,
|
||||
str(b),
|
||||
position=text_anchor,
|
||||
size=None,
|
||||
color=(255, 255, 255),
|
||||
thickness=None,
|
||||
)
|
||||
for r in regions:
|
||||
draw_box(canvas, r, (0, 255, 0), 2)
|
||||
cv2.imwrite(
|
||||
f"debug/frames/{name}.jpg",
|
||||
canvas,
|
||||
)
|
||||
|
||||
|
||||
def save_cluster_boundary_image(name, boxes, bounding_boxes):
|
||||
canvas = np.zeros((1000, 2000, 3), np.uint8)
|
||||
color = Palette.choose_color(np.random.rand())
|
||||
for box in boxes:
|
||||
draw_box(canvas, box, color, 2)
|
||||
for bound in bounding_boxes:
|
||||
draw_box(canvas, bound, (0, 255, 0), 2)
|
||||
cv2.imwrite(
|
||||
f"debug/frames/{name}.jpg",
|
||||
canvas,
|
||||
)
|
||||
|
||||
|
||||
class TestConfig(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.frame_shape = (1000, 2000)
|
||||
self.min_region_size = 160
|
||||
|
||||
def test_cluster_candidates(self):
|
||||
boxes = [(100, 100, 200, 200), (202, 150, 252, 200), (900, 900, 950, 950)]
|
||||
|
||||
cluster_candidates = get_cluster_candidates(
|
||||
self.frame_shape, self.min_region_size, boxes
|
||||
)
|
||||
|
||||
# save_clusters_image("cluster_candidates", boxes, cluster_candidates)
|
||||
|
||||
assert len(cluster_candidates) == 2
|
||||
|
||||
def test_cluster_boundary(self):
|
||||
boxes = [(100, 100, 200, 200), (215, 215, 325, 325)]
|
||||
boundary_boxes = [
|
||||
get_cluster_boundary(box, self.min_region_size) for box in boxes
|
||||
]
|
||||
|
||||
# save_cluster_boundary_image("bound", boxes, boundary_boxes)
|
||||
assert len(boundary_boxes) == 2
|
||||
|
||||
def test_cluster_regions(self):
|
||||
boxes = [(100, 100, 200, 200), (202, 150, 252, 200), (900, 900, 950, 950)]
|
||||
|
||||
cluster_candidates = get_cluster_candidates(
|
||||
self.frame_shape, self.min_region_size, boxes
|
||||
)
|
||||
|
||||
regions = [
|
||||
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
|
||||
for candidate in cluster_candidates
|
||||
]
|
||||
|
||||
# save_clusters_image("regions", boxes, cluster_candidates, regions)
|
||||
assert len(regions) == 2
|
||||
|
||||
def test_box_too_small_for_cluster(self):
|
||||
boxes = [(100, 100, 600, 600), (655, 100, 700, 145)]
|
||||
|
||||
cluster_candidates = get_cluster_candidates(
|
||||
self.frame_shape, self.min_region_size, boxes
|
||||
)
|
||||
|
||||
regions = [
|
||||
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
|
||||
for candidate in cluster_candidates
|
||||
]
|
||||
|
||||
save_clusters_image("too_small", boxes, cluster_candidates, regions)
|
||||
|
||||
assert len(cluster_candidates) == 2
|
||||
assert len(regions) == 2
|
||||
|
||||
def test_redundant_clusters(self):
|
||||
boxes = [(100, 100, 200, 200), (305, 305, 415, 415)]
|
||||
|
||||
cluster_candidates = get_cluster_candidates(
|
||||
self.frame_shape, self.min_region_size, boxes
|
||||
)
|
||||
|
||||
regions = [
|
||||
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
|
||||
for candidate in cluster_candidates
|
||||
]
|
||||
|
||||
# save_clusters_image("redundant", boxes, cluster_candidates, regions)
|
||||
|
||||
assert len(cluster_candidates) == 2
|
||||
assert all([len(c) == 1 for c in cluster_candidates])
|
||||
assert len(regions) == 2
|
||||
|
||||
def test_combine_boxes(self):
|
||||
boxes = [
|
||||
(460, 0, 561, 144),
|
||||
(565, 0, 586, 71),
|
||||
]
|
||||
|
||||
# boundary_boxes = [get_cluster_boundary(box) for box in boxes]
|
||||
# save_cluster_boundary_image("combine_bound", boxes, boundary_boxes)
|
||||
|
||||
cluster_candidates = get_cluster_candidates(
|
||||
self.frame_shape, self.min_region_size, boxes
|
||||
)
|
||||
|
||||
regions = [
|
||||
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
|
||||
for candidate in cluster_candidates
|
||||
]
|
||||
|
||||
# save_clusters_image("combine", boxes, cluster_candidates, regions)
|
||||
assert len(regions) == 1
|
||||
|
||||
def test_dont_combine_boxes(self):
|
||||
boxes = [(460, 0, 532, 129), (586, 0, 606, 46)]
|
||||
|
||||
# boundary_boxes = [get_cluster_boundary(box) for box in boxes]
|
||||
# save_cluster_boundary_image("dont_combine_bound", boxes, boundary_boxes)
|
||||
|
||||
cluster_candidates = get_cluster_candidates(
|
||||
self.frame_shape, self.min_region_size, boxes
|
||||
)
|
||||
|
||||
regions = [
|
||||
get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes)
|
||||
for candidate in cluster_candidates
|
||||
]
|
||||
|
||||
# save_clusters_image("dont_combine", boxes, cluster_candidates, regions)
|
||||
assert len(regions) == 2
|
@ -231,16 +231,32 @@ class NorfairTracker(ObjectTracker):
|
||||
# update or create new tracks
|
||||
active_ids = []
|
||||
for t in tracked_objects:
|
||||
estimate = tuple(t.estimate.flatten().astype(int))
|
||||
# keep the estimate within the bounds of the image
|
||||
estimate = (
|
||||
max(0, estimate[0]),
|
||||
max(0, estimate[1]),
|
||||
min(self.detect_config.width - 1, estimate[2]),
|
||||
min(self.detect_config.height - 1, estimate[3]),
|
||||
)
|
||||
obj = {
|
||||
**t.last_detection.data,
|
||||
"estimate": estimate,
|
||||
}
|
||||
active_ids.append(t.global_id)
|
||||
if t.global_id not in self.track_id_map:
|
||||
self.register(t.global_id, t.last_detection.data)
|
||||
self.register(t.global_id, obj)
|
||||
# if there wasn't a detection in this frame, increment disappeared
|
||||
elif t.last_detection.data["frame_time"] != frame_time:
|
||||
id = self.track_id_map[t.global_id]
|
||||
self.disappeared[id] += 1
|
||||
# sometimes the estimate gets way off
|
||||
# only update if the upper left corner is actually upper left
|
||||
if estimate[0] < estimate[2] and estimate[1] < estimate[3]:
|
||||
self.tracked_objects[id]["estimate"] = obj["estimate"]
|
||||
# else update it
|
||||
else:
|
||||
self.update(t.global_id, t.last_detection.data)
|
||||
self.update(t.global_id, obj)
|
||||
|
||||
# clear expired tracks
|
||||
expired_ids = [k for k in self.track_id_map.keys() if k not in active_ids]
|
||||
|
285
frigate/video.py
285
frigate/video.py
@ -1,9 +1,9 @@
|
||||
import datetime
|
||||
import logging
|
||||
import math
|
||||
import multiprocessing as mp
|
||||
import os
|
||||
import queue
|
||||
import random
|
||||
import signal
|
||||
import subprocess as sp
|
||||
import threading
|
||||
@ -18,6 +18,7 @@ from frigate.config import CameraConfig, DetectConfig, PixelFormatEnum
|
||||
from frigate.const import CACHE_DIR
|
||||
from frigate.log import LogPipe
|
||||
from frigate.motion import MotionDetector
|
||||
from frigate.motion.improved_motion import ImprovedMotionDetector
|
||||
from frigate.object_detection import RemoteObjectDetector
|
||||
from frigate.track import ObjectTracker
|
||||
from frigate.track.norfair_tracker import NorfairTracker
|
||||
@ -27,7 +28,7 @@ from frigate.util import (
|
||||
SharedMemoryFrameManager,
|
||||
area,
|
||||
calculate_region,
|
||||
clipped,
|
||||
draw_box_with_label,
|
||||
intersection,
|
||||
intersection_over_union,
|
||||
listen,
|
||||
@ -462,9 +463,10 @@ def track_camera(
|
||||
objects_to_track = config.objects.track
|
||||
object_filters = config.objects.filters
|
||||
|
||||
motion_detector = MotionDetector(
|
||||
motion_detector = ImprovedMotionDetector(
|
||||
frame_shape,
|
||||
config.motion,
|
||||
config.detect.fps,
|
||||
improve_contrast_enabled,
|
||||
motion_threshold,
|
||||
motion_contour_area,
|
||||
@ -505,6 +507,13 @@ def box_overlaps(b1, b2):
|
||||
return True
|
||||
|
||||
|
||||
def box_inside(b1, b2):
|
||||
# check if b2 is inside b1
|
||||
if b2[0] >= b1[0] and b2[1] >= b1[1] and b2[2] <= b1[2] and b2[3] <= b1[3]:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def reduce_boxes(boxes, iou_threshold=0.0):
|
||||
clusters = []
|
||||
|
||||
@ -575,6 +584,91 @@ def detect(
|
||||
return detections
|
||||
|
||||
|
||||
def get_cluster_boundary(box, min_region):
|
||||
# compute the max region size for the current box (box is 10% of region)
|
||||
box_width = box[2] - box[0]
|
||||
box_height = box[3] - box[1]
|
||||
max_region_area = abs(box_width * box_height) / 0.1
|
||||
max_region_size = max(min_region, int(math.sqrt(max_region_area)))
|
||||
|
||||
centroid = (box_width / 2 + box[0], box_height / 2 + box[1])
|
||||
|
||||
max_x_dist = int(max_region_size - box_width / 2 * 1.1)
|
||||
max_y_dist = int(max_region_size - box_height / 2 * 1.1)
|
||||
|
||||
return [
|
||||
int(centroid[0] - max_x_dist),
|
||||
int(centroid[1] - max_y_dist),
|
||||
int(centroid[0] + max_x_dist),
|
||||
int(centroid[1] + max_y_dist),
|
||||
]
|
||||
|
||||
|
||||
def get_cluster_candidates(frame_shape, min_region, boxes):
|
||||
# and create a cluster of other boxes using it's max region size
|
||||
# only include boxes where the region is an appropriate(except the region could possibly be smaller?)
|
||||
# size in the cluster. in order to be in the cluster, the furthest corner needs to be within x,y offset
|
||||
# determined by the max_region size minus half the box + 20%
|
||||
# TODO: see if we can do this with numpy
|
||||
cluster_candidates = []
|
||||
used_boxes = []
|
||||
# loop over each box
|
||||
for current_index, b in enumerate(boxes):
|
||||
if current_index in used_boxes:
|
||||
continue
|
||||
cluster = [current_index]
|
||||
used_boxes.append(current_index)
|
||||
cluster_boundary = get_cluster_boundary(b, min_region)
|
||||
# find all other boxes that fit inside the boundary
|
||||
for compare_index, compare_box in enumerate(boxes):
|
||||
if compare_index in used_boxes:
|
||||
continue
|
||||
|
||||
# if the box is not inside the potential cluster area, cluster them
|
||||
if not box_inside(cluster_boundary, compare_box):
|
||||
continue
|
||||
|
||||
# get the region if you were to add this box to the cluster
|
||||
potential_cluster = cluster + [compare_index]
|
||||
cluster_region = get_cluster_region(
|
||||
frame_shape, min_region, potential_cluster, boxes
|
||||
)
|
||||
# if region could be smaller and either box would be too small
|
||||
# for the resulting region, dont cluster
|
||||
should_cluster = True
|
||||
if (cluster_region[2] - cluster_region[0]) > min_region:
|
||||
for b in potential_cluster:
|
||||
box = boxes[b]
|
||||
# boxes should be more than 5% of the area of the region
|
||||
if area(box) / area(cluster_region) < 0.05:
|
||||
should_cluster = False
|
||||
break
|
||||
|
||||
if should_cluster:
|
||||
cluster.append(compare_index)
|
||||
used_boxes.append(compare_index)
|
||||
cluster_candidates.append(cluster)
|
||||
|
||||
# return the unique clusters only
|
||||
unique = {tuple(sorted(c)) for c in cluster_candidates}
|
||||
return [list(tup) for tup in unique]
|
||||
|
||||
|
||||
def get_cluster_region(frame_shape, min_region, cluster, boxes):
|
||||
min_x = frame_shape[1]
|
||||
min_y = frame_shape[0]
|
||||
max_x = 0
|
||||
max_y = 0
|
||||
for b in cluster:
|
||||
min_x = min(boxes[b][0], min_x)
|
||||
min_y = min(boxes[b][1], min_y)
|
||||
max_x = max(boxes[b][2], max_x)
|
||||
max_y = max(boxes[b][3], max_y)
|
||||
return calculate_region(
|
||||
frame_shape, min_x, min_y, max_x, max_y, min_region, multiplier=1.2
|
||||
)
|
||||
|
||||
|
||||
def process_frames(
|
||||
camera_name: str,
|
||||
frame_queue: mp.Queue,
|
||||
@ -603,6 +697,8 @@ def process_frames(
|
||||
|
||||
startup_scan_counter = 0
|
||||
|
||||
region_min_size = int(max(model_config.height, model_config.width) / 2)
|
||||
|
||||
while not stop_event.is_set():
|
||||
if exit_on_empty and frame_queue.empty():
|
||||
logger.info("Exiting track_objects...")
|
||||
@ -654,35 +750,22 @@ def process_frames(
|
||||
|
||||
# get tracked object boxes that aren't stationary
|
||||
tracked_object_boxes = [
|
||||
obj["box"]
|
||||
obj["estimate"]
|
||||
for obj in object_tracker.tracked_objects.values()
|
||||
if obj["id"] not in stationary_object_ids
|
||||
]
|
||||
|
||||
# combine motion boxes with known locations of existing objects
|
||||
combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes)
|
||||
combined_boxes = motion_boxes + tracked_object_boxes
|
||||
|
||||
region_min_size = max(model_config.height, model_config.width)
|
||||
# compute regions
|
||||
regions = [
|
||||
calculate_region(
|
||||
frame_shape,
|
||||
a[0],
|
||||
a[1],
|
||||
a[2],
|
||||
a[3],
|
||||
region_min_size,
|
||||
multiplier=random.uniform(1.2, 1.5),
|
||||
)
|
||||
for a in combined_boxes
|
||||
]
|
||||
cluster_candidates = get_cluster_candidates(
|
||||
frame_shape, region_min_size, combined_boxes
|
||||
)
|
||||
|
||||
# consolidate regions with heavy overlap
|
||||
regions = [
|
||||
calculate_region(
|
||||
frame_shape, a[0], a[1], a[2], a[3], region_min_size, multiplier=1.0
|
||||
get_cluster_region(
|
||||
frame_shape, region_min_size, candidate, combined_boxes
|
||||
)
|
||||
for a in reduce_boxes(regions, 0.4)
|
||||
for candidate in cluster_candidates
|
||||
]
|
||||
|
||||
# if starting up, get the next startup scan region
|
||||
@ -733,74 +816,38 @@ def process_frames(
|
||||
)
|
||||
|
||||
#########
|
||||
# merge objects, check for clipped objects and look again up to 4 times
|
||||
# merge objects
|
||||
#########
|
||||
refining = len(regions) > 0
|
||||
refine_count = 0
|
||||
while refining and refine_count < 4:
|
||||
refining = False
|
||||
# group by name
|
||||
detected_object_groups = defaultdict(lambda: [])
|
||||
for detection in detections:
|
||||
detected_object_groups[detection[0]].append(detection)
|
||||
|
||||
# group by name
|
||||
detected_object_groups = defaultdict(lambda: [])
|
||||
for detection in detections:
|
||||
detected_object_groups[detection[0]].append(detection)
|
||||
selected_objects = []
|
||||
for group in detected_object_groups.values():
|
||||
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
|
||||
# o[2] is the box of the object: xmin, ymin, xmax, ymax
|
||||
# apply max/min to ensure values do not exceed the known frame size
|
||||
boxes = [
|
||||
(
|
||||
o[2][0],
|
||||
o[2][1],
|
||||
o[2][2] - o[2][0],
|
||||
o[2][3] - o[2][1],
|
||||
)
|
||||
for o in group
|
||||
]
|
||||
confidences = [o[1] for o in group]
|
||||
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
||||
|
||||
selected_objects = []
|
||||
for group in detected_object_groups.values():
|
||||
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
|
||||
# o[2] is the box of the object: xmin, ymin, xmax, ymax
|
||||
# apply max/min to ensure values do not exceed the known frame size
|
||||
boxes = [
|
||||
(
|
||||
o[2][0],
|
||||
o[2][1],
|
||||
o[2][2] - o[2][0],
|
||||
o[2][3] - o[2][1],
|
||||
)
|
||||
for o in group
|
||||
]
|
||||
confidences = [o[1] for o in group]
|
||||
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
||||
# add objects
|
||||
for index in idxs:
|
||||
index = index if isinstance(index, np.int32) else index[0]
|
||||
obj = group[index]
|
||||
selected_objects.append(obj)
|
||||
|
||||
for index in idxs:
|
||||
index = index if isinstance(index, np.int32) else index[0]
|
||||
obj = group[index]
|
||||
if clipped(obj, frame_shape):
|
||||
box = obj[2]
|
||||
# calculate a new region that will hopefully get the entire object
|
||||
region = calculate_region(
|
||||
frame_shape,
|
||||
box[0],
|
||||
box[1],
|
||||
box[2],
|
||||
box[3],
|
||||
region_min_size,
|
||||
)
|
||||
|
||||
regions.append(region)
|
||||
|
||||
selected_objects.extend(
|
||||
detect(
|
||||
detect_config,
|
||||
object_detector,
|
||||
frame,
|
||||
model_config,
|
||||
region,
|
||||
objects_to_track,
|
||||
object_filters,
|
||||
)
|
||||
)
|
||||
|
||||
refining = True
|
||||
else:
|
||||
selected_objects.append(obj)
|
||||
|
||||
# set the detections list to only include top, complete objects
|
||||
# and new detections
|
||||
detections = selected_objects
|
||||
|
||||
if refining:
|
||||
refine_count += 1
|
||||
# set the detections list to only include top objects
|
||||
detections = selected_objects
|
||||
|
||||
## drop detections that overlap too much
|
||||
consolidated_detections = []
|
||||
@ -848,7 +895,7 @@ def process_frames(
|
||||
else:
|
||||
object_tracker.update_frame_times(frame_time)
|
||||
|
||||
# debug tracking by writing frames
|
||||
# debug object tracking
|
||||
if False:
|
||||
bgr_frame = cv2.cvtColor(
|
||||
frame,
|
||||
@ -858,7 +905,67 @@ def process_frames(
|
||||
cv2.imwrite(
|
||||
f"debug/frames/track-{'{:.6f}'.format(frame_time)}.jpg", bgr_frame
|
||||
)
|
||||
# debug
|
||||
if False:
|
||||
bgr_frame = cv2.cvtColor(
|
||||
frame,
|
||||
cv2.COLOR_YUV2BGR_I420,
|
||||
)
|
||||
|
||||
for m_box in motion_boxes:
|
||||
cv2.rectangle(
|
||||
bgr_frame,
|
||||
(m_box[0], m_box[1]),
|
||||
(m_box[2], m_box[3]),
|
||||
(0, 0, 255),
|
||||
2,
|
||||
)
|
||||
|
||||
for b in tracked_object_boxes:
|
||||
cv2.rectangle(
|
||||
bgr_frame,
|
||||
(b[0], b[1]),
|
||||
(b[2], b[3]),
|
||||
(255, 0, 0),
|
||||
2,
|
||||
)
|
||||
|
||||
for obj in object_tracker.tracked_objects.values():
|
||||
if obj["frame_time"] == frame_time:
|
||||
thickness = 2
|
||||
color = model_config.colormap[obj["label"]]
|
||||
else:
|
||||
thickness = 1
|
||||
color = (255, 0, 0)
|
||||
|
||||
# draw the bounding boxes on the frame
|
||||
box = obj["box"]
|
||||
|
||||
draw_box_with_label(
|
||||
bgr_frame,
|
||||
box[0],
|
||||
box[1],
|
||||
box[2],
|
||||
box[3],
|
||||
obj["label"],
|
||||
obj["id"],
|
||||
thickness=thickness,
|
||||
color=color,
|
||||
)
|
||||
|
||||
for region in regions:
|
||||
cv2.rectangle(
|
||||
bgr_frame,
|
||||
(region[0], region[1]),
|
||||
(region[2], region[3]),
|
||||
(0, 255, 0),
|
||||
2,
|
||||
)
|
||||
|
||||
cv2.imwrite(
|
||||
f"debug/frames/{camera_name}-{'{:.6f}'.format(frame_time)}.jpg",
|
||||
bgr_frame,
|
||||
)
|
||||
# add to the queue if not full
|
||||
if detected_objects_queue.full():
|
||||
frame_manager.delete(f"{camera_name}{frame_time}")
|
||||
|
Loading…
Reference in New Issue
Block a user