mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
switch everything to run off of tracked objects
This commit is contained in:
parent
be5a114f6a
commit
d87f4407a0
@ -6,39 +6,35 @@ from collections import Counter, defaultdict
|
||||
import itertools
|
||||
|
||||
class MqttObjectPublisher(threading.Thread):
|
||||
def __init__(self, client, topic_prefix, objects_parsed, detected_objects, best_frames):
|
||||
def __init__(self, client, topic_prefix, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.client = client
|
||||
self.topic_prefix = topic_prefix
|
||||
self.objects_parsed = objects_parsed
|
||||
self._detected_objects = detected_objects
|
||||
self.best_frames = best_frames
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name("MqttObjectPublisher")
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
current_object_status = defaultdict(lambda: 'OFF')
|
||||
while True:
|
||||
# wait until objects have been parsed
|
||||
with self.objects_parsed:
|
||||
self.objects_parsed.wait()
|
||||
# wait until objects have been tracked
|
||||
with self.camera.objects_tracked:
|
||||
self.camera.objects_tracked.wait()
|
||||
|
||||
# make a copy of detected objects
|
||||
detected_objects = self._detected_objects.copy()
|
||||
|
||||
# total up all scores by object type
|
||||
# count objects with more than 2 entries in history by type
|
||||
obj_counter = Counter()
|
||||
for obj in itertools.chain.from_iterable(detected_objects.values()):
|
||||
obj_counter[obj['name']] += obj['score']
|
||||
for obj in self.camera.object_tracker.tracked_objects.values():
|
||||
if len(obj['history']) > 1:
|
||||
obj_counter[obj['name']] += 1
|
||||
|
||||
# report on detected objects
|
||||
for obj_name, total_score in obj_counter.items():
|
||||
new_status = 'ON' if int(total_score*100) > 100 else 'OFF'
|
||||
for obj_name, count in obj_counter.items():
|
||||
new_status = 'ON' if count > 0 else 'OFF'
|
||||
if new_status != current_object_status[obj_name]:
|
||||
current_object_status[obj_name] = new_status
|
||||
self.client.publish(self.topic_prefix+'/'+obj_name, new_status, retain=False)
|
||||
# send the snapshot over mqtt if we have it as well
|
||||
if obj_name in self.best_frames.best_frames:
|
||||
best_frame = cv2.cvtColor(self.best_frames.best_frames[obj_name], cv2.COLOR_RGB2BGR)
|
||||
if obj_name in self.camera.best_frames.best_frames:
|
||||
best_frame = cv2.cvtColor(self.camera.best_frames.best_frames[obj_name], cv2.COLOR_RGB2BGR)
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
if ret:
|
||||
jpg_bytes = jpg.tobytes()
|
||||
|
@ -23,7 +23,7 @@ class PreppedQueueProcessor(threading.Thread):
|
||||
self.avg_inference_speed = 10
|
||||
|
||||
def run(self):
|
||||
prctl.set_name("PreppedQueueProcessor")
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
# process queue...
|
||||
while True:
|
||||
if self.prepped_frame_queue.full():
|
||||
@ -44,7 +44,7 @@ class RegionRequester(threading.Thread):
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name("RegionRequester")
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
frame_time = 0.0
|
||||
while True:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
@ -58,7 +58,7 @@ class RegionRequester(threading.Thread):
|
||||
frame_time = self.camera.frame_time.value
|
||||
|
||||
# grab the current tracked objects
|
||||
tracked_objects = self.camera.object_tracker.tracked_objects.values().copy()
|
||||
tracked_objects = list(self.camera.object_tracker.tracked_objects.values()).copy()
|
||||
|
||||
with self.camera.regions_in_process_lock:
|
||||
self.camera.regions_in_process[frame_time] = len(self.camera.config['regions'])
|
||||
@ -100,7 +100,7 @@ class RegionPrepper(threading.Thread):
|
||||
self.prepped_frame_queue = prepped_frame_queue
|
||||
|
||||
def run(self):
|
||||
prctl.set_name("RegionPrepper")
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
|
||||
resize_request = self.resize_request_queue.get()
|
||||
|
@ -10,10 +10,9 @@ from scipy.spatial import distance as dist
|
||||
from frigate.util import draw_box_with_label, LABELS, compute_intersection_rectangle, compute_intersection_over_union, calculate_region
|
||||
|
||||
class ObjectCleaner(threading.Thread):
|
||||
def __init__(self, objects_parsed, detected_objects):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self._objects_parsed = objects_parsed
|
||||
self._detected_objects = detected_objects
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name("ObjectCleaner")
|
||||
@ -22,22 +21,9 @@ class ObjectCleaner(threading.Thread):
|
||||
# wait a bit before checking for expired frames
|
||||
time.sleep(0.2)
|
||||
|
||||
# expire the objects that are more than 1 second old
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# look for the first object found within the last second
|
||||
# (newest objects are appended to the end)
|
||||
detected_objects = self._detected_objects.copy()
|
||||
|
||||
objects_removed = False
|
||||
for frame_time in detected_objects.keys():
|
||||
if now-frame_time>2:
|
||||
del self._detected_objects[frame_time]
|
||||
objects_removed = True
|
||||
|
||||
if objects_removed:
|
||||
# notify that parsed objects were changed
|
||||
with self._objects_parsed:
|
||||
self._objects_parsed.notify_all()
|
||||
for frame_time in list(self.camera.detected_objects.keys()).copy():
|
||||
if not frame_time in self.camera.frame_cache:
|
||||
del self.camera.detected_objects[frame_time]
|
||||
|
||||
class DetectedObjectsProcessor(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
@ -168,9 +154,6 @@ class RegionRefiner(threading.Thread):
|
||||
selected_objects = [o for o in selected_objects if not self.filtered(o)]
|
||||
|
||||
self.camera.detected_objects[frame_time] = selected_objects
|
||||
|
||||
with self.camera.objects_parsed:
|
||||
self.camera.objects_parsed.notify_all()
|
||||
|
||||
# print(f"{frame_time} is actually finished")
|
||||
|
||||
@ -247,11 +230,16 @@ class ObjectTracker(threading.Thread):
|
||||
while True:
|
||||
frame_time = self.camera.refined_frame_queue.get()
|
||||
self.match_and_update(self.camera.detected_objects[frame_time])
|
||||
self.camera.frame_tracked_queue.put(frame_time)
|
||||
self.camera.frame_output_queue.put(frame_time)
|
||||
if len(self.tracked_objects) > 0:
|
||||
with self.camera.objects_tracked:
|
||||
self.camera.objects_tracked.notify_all()
|
||||
|
||||
def register(self, index, obj):
|
||||
id = f"{str(obj['frame_time'])}-{index}"
|
||||
obj['id'] = id
|
||||
obj['top_score'] = obj['score']
|
||||
self.add_history(obj)
|
||||
self.tracked_objects[id] = obj
|
||||
self.disappeared[id] = 0
|
||||
|
||||
@ -261,7 +249,22 @@ class ObjectTracker(threading.Thread):
|
||||
|
||||
def update(self, id, new_obj):
|
||||
self.tracked_objects[id].update(new_obj)
|
||||
# TODO: am i missing anything? history?
|
||||
self.add_history(self.tracked_objects[id])
|
||||
if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']:
|
||||
self.tracked_objects[id]['top_score'] = self.tracked_objects[id]['score']
|
||||
|
||||
def add_history(self, obj):
|
||||
entry = {
|
||||
'score': obj['score'],
|
||||
'box': obj['box'],
|
||||
'region': obj['region'],
|
||||
'centroid': obj['centroid'],
|
||||
'frame_time': obj['frame_time']
|
||||
}
|
||||
if 'history' in obj:
|
||||
obj['history'].append(entry)
|
||||
else:
|
||||
obj['history'] = [entry]
|
||||
|
||||
def match_and_update(self, new_objects):
|
||||
# check to see if the list of input bounding box rectangles
|
||||
@ -384,26 +387,23 @@ class ObjectTracker(threading.Thread):
|
||||
|
||||
# Maintains the frame and object with the highest score
|
||||
class BestFrames(threading.Thread):
|
||||
def __init__(self, objects_parsed, recent_frames, detected_objects):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.objects_parsed = objects_parsed
|
||||
self.recent_frames = recent_frames
|
||||
self.detected_objects = detected_objects
|
||||
self.camera = camera
|
||||
self.best_objects = {}
|
||||
self.best_frames = {}
|
||||
|
||||
def run(self):
|
||||
prctl.set_name("BestFrames")
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
|
||||
# wait until objects have been parsed
|
||||
with self.objects_parsed:
|
||||
self.objects_parsed.wait()
|
||||
# wait until objects have been tracked
|
||||
with self.camera.objects_tracked:
|
||||
self.camera.objects_tracked.wait()
|
||||
|
||||
# make a copy of detected objects
|
||||
detected_objects = self.detected_objects.copy()
|
||||
detected_objects = list(self.camera.object_tracker.tracked_objects.values()).copy()
|
||||
|
||||
for obj in itertools.chain.from_iterable(detected_objects.values()):
|
||||
for obj in detected_objects:
|
||||
if obj['name'] in self.best_objects:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# if the object is a higher score than the current best score
|
||||
@ -413,12 +413,9 @@ class BestFrames(threading.Thread):
|
||||
else:
|
||||
self.best_objects[obj['name']] = obj
|
||||
|
||||
# make a copy of the recent frames
|
||||
recent_frames = self.recent_frames.copy()
|
||||
|
||||
for name, obj in self.best_objects.items():
|
||||
if obj['frame_time'] in recent_frames:
|
||||
best_frame = recent_frames[obj['frame_time']] #, np.zeros((720,1280,3), np.uint8))
|
||||
if obj['frame_time'] in self.camera.frame_cache:
|
||||
best_frame = self.camera.frame_cache[obj['frame_time']]
|
||||
|
||||
draw_box_with_label(best_frame, obj['box']['xmin'], obj['box']['ymin'],
|
||||
obj['box']['xmax'], obj['box']['ymax'], obj['name'], f"{int(obj['score']*100)}% {obj['area']}")
|
||||
|
@ -26,17 +26,18 @@ class FrameTracker(threading.Thread):
|
||||
self.recent_frames = recent_frames
|
||||
|
||||
def run(self):
|
||||
prctl.set_name("FrameTracker")
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
# wait for a frame
|
||||
with self.frame_ready:
|
||||
self.frame_ready.wait()
|
||||
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# delete any old frames
|
||||
stored_frame_times = list(self.recent_frames.keys())
|
||||
for k in stored_frame_times:
|
||||
if (now - k) > 10:
|
||||
stored_frame_times.sort(reverse=True)
|
||||
if len(stored_frame_times) > 100:
|
||||
frames_to_delete = stored_frame_times[50:]
|
||||
for k in frames_to_delete:
|
||||
del self.recent_frames[k]
|
||||
|
||||
def get_frame_shape(source):
|
||||
@ -58,7 +59,7 @@ class CameraWatchdog(threading.Thread):
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name("CameraWatchdog")
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
# wait a bit before checking
|
||||
time.sleep(10)
|
||||
@ -75,7 +76,7 @@ class CameraCapture(threading.Thread):
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name("CameraCapture")
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
frame_num = 0
|
||||
while True:
|
||||
if self.camera.ffmpeg_process.poll() != None:
|
||||
@ -113,10 +114,10 @@ class VideoWriter(threading.Thread):
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name("VideoWriter")
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
frame_time = self.camera.frame_tracked_queue.get()
|
||||
if len(self.camera.detected_objects[frame_time]) == 0:
|
||||
frame_time = self.camera.frame_output_queue.get()
|
||||
if len(self.camera.object_tracker.tracked_objects) == 0:
|
||||
continue
|
||||
f = open(f"/debug/{self.camera.name}-{str(frame_time)}.jpg", 'wb')
|
||||
f.write(self.camera.frame_with_objects(frame_time))
|
||||
@ -137,7 +138,7 @@ class Camera:
|
||||
self.regions_in_process_lock = mp.Lock()
|
||||
self.finished_frame_queue = queue.Queue()
|
||||
self.refined_frame_queue = queue.Queue()
|
||||
self.frame_tracked_queue = queue.Queue()
|
||||
self.frame_output_queue = queue.Queue()
|
||||
|
||||
self.ffmpeg = config.get('ffmpeg', {})
|
||||
self.ffmpeg_input = get_ffmpeg_input(self.ffmpeg['input'])
|
||||
@ -161,8 +162,8 @@ class Camera:
|
||||
self.frame_lock = mp.Lock()
|
||||
# Condition for notifying that a new frame is ready
|
||||
self.frame_ready = mp.Condition()
|
||||
# Condition for notifying that objects were parsed
|
||||
self.objects_parsed = mp.Condition()
|
||||
# Condition for notifying that objects were tracked
|
||||
self.objects_tracked = mp.Condition()
|
||||
|
||||
# Queue for prepped frames, max size set to (number of regions * 5)
|
||||
max_queue_size = len(self.config['regions'])*5
|
||||
@ -208,11 +209,11 @@ class Camera:
|
||||
self.region_prepper.start()
|
||||
|
||||
# start a thread to store the highest scoring recent frames for monitored object types
|
||||
self.best_frames = BestFrames(self.objects_parsed, self.frame_cache, self.detected_objects)
|
||||
self.best_frames = BestFrames(self)
|
||||
self.best_frames.start()
|
||||
|
||||
# start a thread to expire objects from the detected objects list
|
||||
self.object_cleaner = ObjectCleaner(self.objects_parsed, self.detected_objects)
|
||||
self.object_cleaner = ObjectCleaner(self)
|
||||
self.object_cleaner.start()
|
||||
|
||||
# start a thread to refine regions when objects are clipped
|
||||
@ -230,7 +231,7 @@ class Camera:
|
||||
self.video_writer.start()
|
||||
|
||||
# start a thread to publish object scores
|
||||
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects, self.best_frames)
|
||||
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self)
|
||||
mqtt_publisher.start()
|
||||
|
||||
# create a watchdog thread for capture process
|
||||
@ -321,7 +322,7 @@ class Camera:
|
||||
color, 2)
|
||||
|
||||
# draw the bounding boxes on the screen
|
||||
for id, obj in self.object_tracker.tracked_objects.items():
|
||||
for id, obj in list(self.object_tracker.tracked_objects.items()):
|
||||
# for obj in detected_objects[frame_time]:
|
||||
cv2.rectangle(frame, (obj['region']['xmin'], obj['region']['ymin']),
|
||||
(obj['region']['xmax'], obj['region']['ymax']),
|
||||
|
Loading…
Reference in New Issue
Block a user