detectors: implement class aggregation

This commit is contained in:
Indrek Mandre 2024-02-05 23:47:01 +02:00
parent dee95de908
commit dcfe6bbf6f
4 changed files with 46 additions and 7 deletions

View File

@ -57,6 +57,8 @@ class EdgeTpuTfl(DetectionApi):
self.tensor_output_details = self.interpreter.get_output_details() self.tensor_output_details = self.interpreter.get_output_details()
self.model_type = detector_config.model.model_type self.model_type = detector_config.model.model_type
self.class_aggregation = yolo_utils.generate_class_aggregation_from_config(detector_config)
def detect_raw(self, tensor_input): def detect_raw(self, tensor_input):
if self.model_type == 'yolov8': if self.model_type == 'yolov8':
scale, zero_point = self.tensor_input_details[0]['quantization'] scale, zero_point = self.tensor_input_details[0]['quantization']
@ -72,7 +74,7 @@ class EdgeTpuTfl(DetectionApi):
model_input_shape = self.tensor_input_details[0]['shape'] model_input_shape = self.tensor_input_details[0]['shape']
tensor_output[:, [0, 2]] *= model_input_shape[2] tensor_output[:, [0, 2]] *= model_input_shape[2]
tensor_output[:, [1, 3]] *= model_input_shape[1] tensor_output[:, [1, 3]] *= model_input_shape[1]
return yolo_utils.yolov8_postprocess(model_input_shape, tensor_output) return yolo_utils.yolov8_postprocess(model_input_shape, tensor_output, class_aggregation = self.class_aggregation)
boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0] boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0] class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]

View File

@ -47,6 +47,8 @@ class ONNXDetector(DetectionApi):
self.model = onnxruntime.InferenceSession(path) self.model = onnxruntime.InferenceSession(path)
logger.info(f"ONNX: {path} loaded") logger.info(f"ONNX: {path} loaded")
self.class_aggregation = yolo_utils.generate_class_aggregation_from_config(detector_config)
def detect_raw(self, tensor_input): def detect_raw(self, tensor_input):
model_input_name = self.model.get_inputs()[0].name model_input_name = self.model.get_inputs()[0].name
model_input_shape = self.model.get_inputs()[0].shape model_input_shape = self.model.get_inputs()[0].shape
@ -55,5 +57,5 @@ class ONNXDetector(DetectionApi):
tensor_output = self.model.run(None, {model_input_name: tensor_input})[0] tensor_output = self.model.run(None, {model_input_name: tensor_input})[0]
return yolo_utils.yolov8_postprocess(model_input_shape, tensor_output) return yolo_utils.yolov8_postprocess(model_input_shape, tensor_output, class_aggregation = self.class_aggregation)

View File

@ -98,6 +98,8 @@ class ROCmDetector(DetectionApi):
migraphx.save(self.model, mxr_path) migraphx.save(self.model, mxr_path)
logger.info(f"AMD/ROCm: model loaded") logger.info(f"AMD/ROCm: model loaded")
self.class_aggregation = yolo_utils.generate_class_aggregation_from_config(detector_config)
def detect_raw(self, tensor_input): def detect_raw(self, tensor_input):
model_input_name = self.model.get_parameter_names()[0]; model_input_name = self.model.get_parameter_names()[0];
model_input_shape = tuple(self.model.get_parameter_shapes()[model_input_name].lens()); model_input_shape = tuple(self.model.get_parameter_shapes()[model_input_name].lens());
@ -109,5 +111,5 @@ class ROCmDetector(DetectionApi):
addr = ctypes.cast(detector_result.data_ptr(), ctypes.POINTER(ctypes.c_float)) addr = ctypes.cast(detector_result.data_ptr(), ctypes.POINTER(ctypes.c_float))
tensor_output = np.ctypeslib.as_array(addr, shape=detector_result.get_shape().lens()) tensor_output = np.ctypeslib.as_array(addr, shape=detector_result.get_shape().lens())
return yolo_utils.yolov8_postprocess(model_input_shape, tensor_output) return yolo_utils.yolov8_postprocess(model_input_shape, tensor_output, class_aggregation = self.class_aggregation)

View File

@ -3,8 +3,34 @@ import logging
import numpy as np import numpy as np
import cv2 import cv2
from frigate.util.builtin import load_labels
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
def generate_class_aggregation(labels):
if isinstance(labels, dict):
labels = [labels.get(i, 'unknown') for i in range(0, max(labels.keys()) + 1)]
while len(labels) > 0 and labels[-1] in ('unknown', 'other'):
labels = labels[:-1]
labels = np.array(labels)
unique_labels = np.unique(labels)
if len(unique_labels) == len(labels):
# nothing to aggregate, so there is no mapping
return None
ret = []
for label in unique_labels:
if label == 'other' or label == 'unknown':
continue
index = np.where(labels == label)[0]
ret.append(((label, index[0]), index))
return ret
def generate_class_aggregation_from_config(config):
labelmap_path = config.model.labelmap_path
if labelmap_path is None:
return None
return generate_class_aggregation(load_labels(labelmap_path))
def preprocess(tensor_input, model_input_shape, model_input_element_type): def preprocess(tensor_input, model_input_shape, model_input_element_type):
model_input_shape = tuple(model_input_shape) model_input_shape = tuple(model_input_shape)
assert tensor_input.dtype == np.uint8, f'tensor_input.dtype: {tensor_input.dtype}' assert tensor_input.dtype == np.uint8, f'tensor_input.dtype: {tensor_input.dtype}'
@ -22,14 +48,21 @@ def preprocess(tensor_input, model_input_shape, model_input_element_type):
# cv2.dnn.blobFromImage is faster than numpying it # cv2.dnn.blobFromImage is faster than numpying it
return cv2.dnn.blobFromImage(tensor_input[0], 1.0 / 255, (model_input_shape[3], model_input_shape[2]), None, swapRB=False) return cv2.dnn.blobFromImage(tensor_input[0], 1.0 / 255, (model_input_shape[3], model_input_shape[2]), None, swapRB=False)
def yolov8_postprocess(model_input_shape, tensor_output, box_count = 20, score_threshold = 0.3, nms_threshold = 0.5): def yolov8_postprocess(model_input_shape, tensor_output, box_count = 20, score_threshold = 0.5, nms_threshold = 0.5, class_aggregation = None):
model_box_count = tensor_output.shape[2] model_box_count = tensor_output.shape[2]
probs = tensor_output[0, 4:, :] probs = tensor_output[0, 4:, :].T
all_ids = np.argmax(probs, axis=0) if class_aggregation is not None:
all_confidences = probs.T[np.arange(model_box_count), all_ids] new_probs = np.zeros((probs.shape[0], len(class_aggregation)), dtype=probs.dtype)
for index, ((label, class_id), selector) in enumerate(class_aggregation):
new_probs[:, index] = np.sum(probs[:, selector], axis=1)
probs = new_probs
all_ids = np.argmax(probs, axis=1)
all_confidences = probs[np.arange(model_box_count), all_ids]
all_boxes = tensor_output[0, 0:4, :].T all_boxes = tensor_output[0, 0:4, :].T
mask = (all_confidences > score_threshold) mask = (all_confidences > score_threshold)
class_ids = all_ids[mask] class_ids = all_ids[mask]
if class_aggregation is not None:
class_ids = np.array([class_aggregation[index][0][1] for index in class_ids])
confidences = all_confidences[mask] confidences = all_confidences[mask]
cx, cy, w, h = all_boxes[mask].T cx, cy, w, h = all_boxes[mask].T