mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	detectors: implement class aggregation
This commit is contained in:
		
							parent
							
								
									dee95de908
								
							
						
					
					
						commit
						dcfe6bbf6f
					
				@ -57,6 +57,8 @@ class EdgeTpuTfl(DetectionApi):
 | 
				
			|||||||
        self.tensor_output_details = self.interpreter.get_output_details()
 | 
					        self.tensor_output_details = self.interpreter.get_output_details()
 | 
				
			||||||
        self.model_type = detector_config.model.model_type
 | 
					        self.model_type = detector_config.model.model_type
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        self.class_aggregation = yolo_utils.generate_class_aggregation_from_config(detector_config)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def detect_raw(self, tensor_input):
 | 
					    def detect_raw(self, tensor_input):
 | 
				
			||||||
        if self.model_type == 'yolov8':
 | 
					        if self.model_type == 'yolov8':
 | 
				
			||||||
            scale, zero_point = self.tensor_input_details[0]['quantization']
 | 
					            scale, zero_point = self.tensor_input_details[0]['quantization']
 | 
				
			||||||
@ -72,7 +74,7 @@ class EdgeTpuTfl(DetectionApi):
 | 
				
			|||||||
            model_input_shape = self.tensor_input_details[0]['shape']
 | 
					            model_input_shape = self.tensor_input_details[0]['shape']
 | 
				
			||||||
            tensor_output[:, [0, 2]] *= model_input_shape[2]
 | 
					            tensor_output[:, [0, 2]] *= model_input_shape[2]
 | 
				
			||||||
            tensor_output[:, [1, 3]] *= model_input_shape[1]
 | 
					            tensor_output[:, [1, 3]] *= model_input_shape[1]
 | 
				
			||||||
            return yolo_utils.yolov8_postprocess(model_input_shape, tensor_output)
 | 
					            return yolo_utils.yolov8_postprocess(model_input_shape, tensor_output, class_aggregation = self.class_aggregation)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
 | 
					        boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
 | 
				
			||||||
        class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
 | 
					        class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
 | 
				
			||||||
 | 
				
			|||||||
@ -47,6 +47,8 @@ class ONNXDetector(DetectionApi):
 | 
				
			|||||||
        self.model = onnxruntime.InferenceSession(path)
 | 
					        self.model = onnxruntime.InferenceSession(path)
 | 
				
			||||||
        logger.info(f"ONNX: {path} loaded")
 | 
					        logger.info(f"ONNX: {path} loaded")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        self.class_aggregation = yolo_utils.generate_class_aggregation_from_config(detector_config)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def detect_raw(self, tensor_input):
 | 
					    def detect_raw(self, tensor_input):
 | 
				
			||||||
        model_input_name = self.model.get_inputs()[0].name
 | 
					        model_input_name = self.model.get_inputs()[0].name
 | 
				
			||||||
        model_input_shape = self.model.get_inputs()[0].shape
 | 
					        model_input_shape = self.model.get_inputs()[0].shape
 | 
				
			||||||
@ -55,5 +57,5 @@ class ONNXDetector(DetectionApi):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        tensor_output = self.model.run(None, {model_input_name: tensor_input})[0]
 | 
					        tensor_output = self.model.run(None, {model_input_name: tensor_input})[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        return yolo_utils.yolov8_postprocess(model_input_shape, tensor_output)
 | 
					        return yolo_utils.yolov8_postprocess(model_input_shape, tensor_output, class_aggregation = self.class_aggregation)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
@ -98,6 +98,8 @@ class ROCmDetector(DetectionApi):
 | 
				
			|||||||
            migraphx.save(self.model, mxr_path)
 | 
					            migraphx.save(self.model, mxr_path)
 | 
				
			||||||
        logger.info(f"AMD/ROCm: model loaded")
 | 
					        logger.info(f"AMD/ROCm: model loaded")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        self.class_aggregation = yolo_utils.generate_class_aggregation_from_config(detector_config)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def detect_raw(self, tensor_input):
 | 
					    def detect_raw(self, tensor_input):
 | 
				
			||||||
        model_input_name = self.model.get_parameter_names()[0];
 | 
					        model_input_name = self.model.get_parameter_names()[0];
 | 
				
			||||||
        model_input_shape = tuple(self.model.get_parameter_shapes()[model_input_name].lens());
 | 
					        model_input_shape = tuple(self.model.get_parameter_shapes()[model_input_name].lens());
 | 
				
			||||||
@ -109,5 +111,5 @@ class ROCmDetector(DetectionApi):
 | 
				
			|||||||
        addr = ctypes.cast(detector_result.data_ptr(), ctypes.POINTER(ctypes.c_float))
 | 
					        addr = ctypes.cast(detector_result.data_ptr(), ctypes.POINTER(ctypes.c_float))
 | 
				
			||||||
        tensor_output = np.ctypeslib.as_array(addr, shape=detector_result.get_shape().lens())
 | 
					        tensor_output = np.ctypeslib.as_array(addr, shape=detector_result.get_shape().lens())
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        return yolo_utils.yolov8_postprocess(model_input_shape, tensor_output)
 | 
					        return yolo_utils.yolov8_postprocess(model_input_shape, tensor_output, class_aggregation = self.class_aggregation)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
@ -3,8 +3,34 @@ import logging
 | 
				
			|||||||
import numpy as np
 | 
					import numpy as np
 | 
				
			||||||
import cv2
 | 
					import cv2
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from frigate.util.builtin import load_labels
 | 
				
			||||||
 | 
					
 | 
				
			||||||
logger = logging.getLogger(__name__)
 | 
					logger = logging.getLogger(__name__)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def generate_class_aggregation(labels):
 | 
				
			||||||
 | 
					    if isinstance(labels, dict):
 | 
				
			||||||
 | 
					        labels = [labels.get(i, 'unknown') for i in range(0, max(labels.keys()) + 1)]
 | 
				
			||||||
 | 
					    while len(labels) > 0 and labels[-1] in ('unknown', 'other'):
 | 
				
			||||||
 | 
					        labels = labels[:-1]
 | 
				
			||||||
 | 
					    labels = np.array(labels)
 | 
				
			||||||
 | 
					    unique_labels = np.unique(labels)
 | 
				
			||||||
 | 
					    if len(unique_labels) == len(labels):
 | 
				
			||||||
 | 
					        # nothing to aggregate, so there is no mapping
 | 
				
			||||||
 | 
					        return None
 | 
				
			||||||
 | 
					    ret = []
 | 
				
			||||||
 | 
					    for label in unique_labels:
 | 
				
			||||||
 | 
					        if label == 'other' or label == 'unknown':
 | 
				
			||||||
 | 
					            continue
 | 
				
			||||||
 | 
					        index = np.where(labels == label)[0]
 | 
				
			||||||
 | 
					        ret.append(((label, index[0]), index))
 | 
				
			||||||
 | 
					    return ret
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def generate_class_aggregation_from_config(config):
 | 
				
			||||||
 | 
					    labelmap_path = config.model.labelmap_path
 | 
				
			||||||
 | 
					    if labelmap_path is None:
 | 
				
			||||||
 | 
					        return None
 | 
				
			||||||
 | 
					    return generate_class_aggregation(load_labels(labelmap_path))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def preprocess(tensor_input, model_input_shape, model_input_element_type):
 | 
					def preprocess(tensor_input, model_input_shape, model_input_element_type):
 | 
				
			||||||
    model_input_shape = tuple(model_input_shape)
 | 
					    model_input_shape = tuple(model_input_shape)
 | 
				
			||||||
    assert tensor_input.dtype == np.uint8, f'tensor_input.dtype: {tensor_input.dtype}'
 | 
					    assert tensor_input.dtype == np.uint8, f'tensor_input.dtype: {tensor_input.dtype}'
 | 
				
			||||||
@ -22,14 +48,21 @@ def preprocess(tensor_input, model_input_shape, model_input_element_type):
 | 
				
			|||||||
    # cv2.dnn.blobFromImage is faster than numpying it
 | 
					    # cv2.dnn.blobFromImage is faster than numpying it
 | 
				
			||||||
    return cv2.dnn.blobFromImage(tensor_input[0], 1.0 / 255, (model_input_shape[3], model_input_shape[2]), None, swapRB=False)
 | 
					    return cv2.dnn.blobFromImage(tensor_input[0], 1.0 / 255, (model_input_shape[3], model_input_shape[2]), None, swapRB=False)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def yolov8_postprocess(model_input_shape, tensor_output, box_count = 20, score_threshold = 0.3, nms_threshold = 0.5):
 | 
					def yolov8_postprocess(model_input_shape, tensor_output, box_count = 20, score_threshold = 0.5, nms_threshold = 0.5, class_aggregation = None):
 | 
				
			||||||
    model_box_count = tensor_output.shape[2]
 | 
					    model_box_count = tensor_output.shape[2]
 | 
				
			||||||
    probs = tensor_output[0, 4:, :]
 | 
					    probs = tensor_output[0, 4:, :].T
 | 
				
			||||||
    all_ids = np.argmax(probs, axis=0)
 | 
					    if class_aggregation is not None:
 | 
				
			||||||
    all_confidences = probs.T[np.arange(model_box_count), all_ids]
 | 
					        new_probs = np.zeros((probs.shape[0], len(class_aggregation)), dtype=probs.dtype)
 | 
				
			||||||
 | 
					        for index, ((label, class_id), selector) in enumerate(class_aggregation):
 | 
				
			||||||
 | 
					            new_probs[:, index] = np.sum(probs[:, selector], axis=1)
 | 
				
			||||||
 | 
					        probs = new_probs
 | 
				
			||||||
 | 
					    all_ids = np.argmax(probs, axis=1)
 | 
				
			||||||
 | 
					    all_confidences = probs[np.arange(model_box_count), all_ids]
 | 
				
			||||||
    all_boxes = tensor_output[0, 0:4, :].T
 | 
					    all_boxes = tensor_output[0, 0:4, :].T
 | 
				
			||||||
    mask = (all_confidences > score_threshold)
 | 
					    mask = (all_confidences > score_threshold)
 | 
				
			||||||
    class_ids = all_ids[mask]
 | 
					    class_ids = all_ids[mask]
 | 
				
			||||||
 | 
					    if class_aggregation is not None:
 | 
				
			||||||
 | 
					        class_ids = np.array([class_aggregation[index][0][1] for index in class_ids])
 | 
				
			||||||
    confidences = all_confidences[mask]
 | 
					    confidences = all_confidences[mask]
 | 
				
			||||||
    cx, cy, w, h = all_boxes[mask].T
 | 
					    cx, cy, w, h = all_boxes[mask].T
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
		Reference in New Issue
	
	Block a user