store the best recent person image and reconnect the RTSP stream if unable to grab several consecutive frames

This commit is contained in:
blakeblackshear 2019-02-27 20:55:07 -06:00
parent 2e3c9da650
commit df7b90e367
4 changed files with 109 additions and 8 deletions

View File

@ -2,6 +2,7 @@
This results in a MJPEG stream with objects identified that has a lower latency than directly viewing the RTSP feed with VLC.
- Prioritizes realtime processing over frames per second. Dropping frames is fine.
- OpenCV runs in a separate process so it can grab frames as quickly as possible to ensure there aren't old frames in the buffer
- Allows you to define specific regions (squares) in the image to look for motion/objects
- Motion detection runs in a separate process per region and signals to object detection to avoid wasting CPU cycles to look for objects when there is no motion
- Object detection with Tensorflow runs in a separate process per region and ignores frames that are more than 0.5 seconds old
- Uses shared memory arrays for handing frames between processes
@ -45,16 +46,17 @@ Access the mjpeg stream at http://localhost:5000
- [x] Add last will and availability for MQTT
- [ ] Build tensorflow from source for CPU optimizations
- [ ] Add ability to turn detection on and off via MQTT
- [ ] MQTT reconnect if disconnected
- [ ] MQTT reconnect if disconnected (and resend availability message)
- [ ] MQTT motion occasionally gets stuck ON
- [ ] Output movie clips of people for notifications, etc.
- [x] Store highest scoring person frame from most recent event
- [x] Add a max size for motion and objects (height/width > 1.5, total area > 1500 and < 100,000)
- [x] Make motion less sensitive to rain
- [x] Use Events or Conditions to signal between threads rather than polling a value
- [x] Implement a debug option to save images with detected objects
- [x] Only report if x% of the recent frames have a person to avoid single frame false positives (maybe take an average of the person scores in the past x frames?)
- [x] Filter out detected objects that are not the right size
- [ ] Make resilient to network drop outs
- [x] Make RTSP resilient to network drop outs
- [ ] Merge bounding boxes that span multiple regions
- [ ] Switch to a config file
- [ ] Allow motion regions to be different than object detection regions

View File

@ -11,12 +11,12 @@ import json
from contextlib import closing
import numpy as np
from object_detection.utils import visualization_utils as vis_util
from flask import Flask, Response, make_response
from flask import Flask, Response, make_response, send_file
import paho.mqtt.client as mqtt
from frigate.util import tonumpyarray
from frigate.mqtt import MqttMotionPublisher, MqttObjectPublisher
from frigate.objects import ObjectParser, ObjectCleaner
from frigate.objects import ObjectParser, ObjectCleaner, BestPersonFrame
from frigate.motion import detect_motion
from frigate.video import fetch_frames, FrameTracker
from frigate.object_detection import detect_objects
@ -126,6 +126,11 @@ def main():
recent_motion_frames, motion_changed, [region['motion_detected'] for region in regions])
frame_tracker.start()
# start a thread to store the highest scoring recent person frame
best_person_frame = BestPersonFrame(objects_parsed, recent_motion_frames, DETECTED_OBJECTS,
motion_changed, [region['motion_detected'] for region in regions])
best_person_frame.start()
# start a thread to parse objects from the queue
object_parser = ObjectParser(object_queue, objects_parsed, DETECTED_OBJECTS)
object_parser.start()
@ -168,6 +173,14 @@ def main():
# create a flask app that encodes frames a mjpeg on demand
app = Flask(__name__)
@app.route('/best_person.jpg')
def best_person():
frame = np.zeros(frame_shape, np.uint8) if best_person_frame.best_frame is None else best_person_frame.best_frame
ret, jpg = cv2.imencode('.jpg', frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
@app.route('/')
def index():
# return a multipart response
@ -219,6 +232,7 @@ def main():
for motion_process in motion_processes:
motion_process.join()
frame_tracker.join()
best_person_frame.join()
object_parser.join()
object_cleaner.join()
mqtt_publisher.join()

View File

@ -1,7 +1,8 @@
import time
import datetime
import threading
import cv2
from object_detection.utils import visualization_utils as vis_util
class ObjectParser(threading.Thread):
def __init__(self, object_queue, objects_parsed, detected_objects):
threading.Thread.__init__(self)
@ -45,4 +46,78 @@ class ObjectCleaner(threading.Thread):
self._objects_parsed.notify_all()
# wait a bit before checking for more expired frames
time.sleep(0.2)
time.sleep(0.2)
# Maintains the frame and person with the highest score from the most recent
# motion event
class BestPersonFrame(threading.Thread):
def __init__(self, objects_parsed, recent_frames, detected_objects, motion_changed, motion_regions):
threading.Thread.__init__(self)
self.objects_parsed = objects_parsed
self.recent_frames = recent_frames
self.detected_objects = detected_objects
self.motion_changed = motion_changed
self.motion_regions = motion_regions
self.best_person = None
self.best_frame = None
def run(self):
motion_start = 0.0
motion_end = 0.0
while True:
# while there is motion
while len([r for r in self.motion_regions if r.is_set()]) > 0:
# wait until objects have been parsed
with self.objects_parsed:
self.objects_parsed.wait()
# make a copy of detected objects
detected_objects = self.detected_objects.copy()
detected_people = [obj for obj in detected_objects if obj['name'] == 'person']
# make a copy of the recent frames
recent_frames = self.recent_frames.copy()
# get the highest scoring person
new_best_person = max(detected_people, key=lambda x:x['score'], default=self.best_person)
# if there isnt a person, continue
if new_best_person is None:
continue
# if there is no current best_person
if self.best_person is None:
self.best_person = new_best_person
# if there is already a best_person
else:
now = datetime.datetime.now().timestamp()
# if the new best person is a higher score than the current best person
# or the current person is more than 1 minute old, use the new best person
if new_best_person['score'] > self.best_person['score'] or (now - self.best_person['frame_time']) > 60:
self.best_person = new_best_person
if not self.best_person is None and self.best_person['frame_time'] in recent_frames:
best_frame = recent_frames[self.best_person['frame_time']]
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_BGR2RGB)
# draw the bounding box on the frame
vis_util.draw_bounding_box_on_image_array(best_frame,
self.best_person['ymin'],
self.best_person['xmin'],
self.best_person['ymax'],
self.best_person['xmax'],
color='red',
thickness=2,
display_str_list=["{}: {}%".format(self.best_person['name'],int(self.best_person['score']*100))],
use_normalized_coordinates=False)
# convert back to BGR
self.best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
motion_end = datetime.datetime.now().timestamp()
# wait for the global motion flag to change
with self.motion_changed:
self.motion_changed.wait()
motion_start = datetime.datetime.now().timestamp()

View File

@ -16,6 +16,7 @@ def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_s
# keep the buffer small so we minimize old data
video.set(cv2.CAP_PROP_BUFFERSIZE,1)
bad_frame_counter = 0
while True:
# check if the video stream is still open, and reopen if needed
if not video.isOpened():
@ -38,9 +39,20 @@ def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_s
# Notify with the condition that a new frame is ready
with frame_ready:
frame_ready.notify_all()
bad_frame_counter = 0
else:
print("Unable to decode frame")
bad_frame_counter += 1
else:
print("Unable to grab a frame")
bad_frame_counter += 1
if bad_frame_counter > 100:
video.release()
video.release()
# Stores 2 seconds worth of frames when motion is detected so they can be used for other threads
class FrameTracker(threading.Thread):
def __init__(self, shared_frame, frame_time, frame_ready, frame_lock, recent_frames, motion_changed, motion_regions):
threading.Thread.__init__(self)
@ -78,8 +90,6 @@ class FrameTracker(threading.Thread):
if (now - k) > 2:
del self.recent_frames[k]
print(stored_frame_times)
# wait for the global motion flag to change
with self.motion_changed:
self.motion_changed.wait()