mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
commit
e791d6646b
@ -21,11 +21,14 @@ cameras:
|
|||||||
x_offset: 0
|
x_offset: 0
|
||||||
y_offset: 300
|
y_offset: 300
|
||||||
min_person_area: 5000
|
min_person_area: 5000
|
||||||
|
threshold: 0.5
|
||||||
- size: 400
|
- size: 400
|
||||||
x_offset: 350
|
x_offset: 350
|
||||||
y_offset: 250
|
y_offset: 250
|
||||||
min_person_area: 2000
|
min_person_area: 2000
|
||||||
|
threshold: 0.5
|
||||||
- size: 400
|
- size: 400
|
||||||
x_offset: 750
|
x_offset: 750
|
||||||
y_offset: 250
|
y_offset: 250
|
||||||
min_person_area: 2000
|
min_person_area: 2000
|
||||||
|
threshold: 0.5
|
||||||
|
@ -38,7 +38,7 @@ class PreppedQueueProcessor(threading.Thread):
|
|||||||
frame = self.prepped_frame_queue.get()
|
frame = self.prepped_frame_queue.get()
|
||||||
|
|
||||||
# Actual detection.
|
# Actual detection.
|
||||||
objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=3)
|
objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=frame['region_threshold'], top_k=3)
|
||||||
# parse and pass detected objects back to the camera
|
# parse and pass detected objects back to the camera
|
||||||
parsed_objects = []
|
parsed_objects = []
|
||||||
for obj in objects:
|
for obj in objects:
|
||||||
@ -59,7 +59,7 @@ class PreppedQueueProcessor(threading.Thread):
|
|||||||
class FramePrepper(threading.Thread):
|
class FramePrepper(threading.Thread):
|
||||||
def __init__(self, camera_name, shared_frame, frame_time, frame_ready,
|
def __init__(self, camera_name, shared_frame, frame_time, frame_ready,
|
||||||
frame_lock,
|
frame_lock,
|
||||||
region_size, region_x_offset, region_y_offset,
|
region_size, region_x_offset, region_y_offset, region_threshold,
|
||||||
prepped_frame_queue):
|
prepped_frame_queue):
|
||||||
|
|
||||||
threading.Thread.__init__(self)
|
threading.Thread.__init__(self)
|
||||||
@ -71,6 +71,7 @@ class FramePrepper(threading.Thread):
|
|||||||
self.region_size = region_size
|
self.region_size = region_size
|
||||||
self.region_x_offset = region_x_offset
|
self.region_x_offset = region_x_offset
|
||||||
self.region_y_offset = region_y_offset
|
self.region_y_offset = region_y_offset
|
||||||
|
self.region_threshold = region_threshold
|
||||||
self.prepped_frame_queue = prepped_frame_queue
|
self.prepped_frame_queue = prepped_frame_queue
|
||||||
|
|
||||||
def run(self):
|
def run(self):
|
||||||
@ -103,6 +104,7 @@ class FramePrepper(threading.Thread):
|
|||||||
'frame_time': frame_time,
|
'frame_time': frame_time,
|
||||||
'frame': frame_expanded.flatten().copy(),
|
'frame': frame_expanded.flatten().copy(),
|
||||||
'region_size': self.region_size,
|
'region_size': self.region_size,
|
||||||
|
'region_threshold': self.region_threshold,
|
||||||
'region_x_offset': self.region_x_offset,
|
'region_x_offset': self.region_x_offset,
|
||||||
'region_y_offset': self.region_y_offset
|
'region_y_offset': self.region_y_offset
|
||||||
})
|
})
|
||||||
|
@ -5,6 +5,7 @@ import cv2
|
|||||||
import threading
|
import threading
|
||||||
import ctypes
|
import ctypes
|
||||||
import multiprocessing as mp
|
import multiprocessing as mp
|
||||||
|
import numpy as np
|
||||||
from object_detection.utils import visualization_utils as vis_util
|
from object_detection.utils import visualization_utils as vis_util
|
||||||
from . util import tonumpyarray
|
from . util import tonumpyarray
|
||||||
from . object_detection import FramePrepper
|
from . object_detection import FramePrepper
|
||||||
@ -19,6 +20,7 @@ def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_s
|
|||||||
# start the video capture
|
# start the video capture
|
||||||
video = cv2.VideoCapture()
|
video = cv2.VideoCapture()
|
||||||
video.open(rtsp_url)
|
video.open(rtsp_url)
|
||||||
|
print("Opening the RTSP Url...")
|
||||||
# keep the buffer small so we minimize old data
|
# keep the buffer small so we minimize old data
|
||||||
video.set(cv2.CAP_PROP_BUFFERSIZE,1)
|
video.set(cv2.CAP_PROP_BUFFERSIZE,1)
|
||||||
|
|
||||||
@ -108,6 +110,22 @@ def get_rtsp_url(rtsp_config):
|
|||||||
rtsp_config['password'], rtsp_config['host'], rtsp_config['port'],
|
rtsp_config['password'], rtsp_config['host'], rtsp_config['port'],
|
||||||
rtsp_config['path'])
|
rtsp_config['path'])
|
||||||
|
|
||||||
|
class CameraWatchdog(threading.Thread):
|
||||||
|
def __init__(self, camera):
|
||||||
|
threading.Thread.__init__(self)
|
||||||
|
self.camera = camera
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
|
||||||
|
while True:
|
||||||
|
# wait a bit before checking
|
||||||
|
time.sleep(60)
|
||||||
|
|
||||||
|
if (datetime.datetime.now().timestamp() - self.camera.shared_frame_time.value) > 2:
|
||||||
|
print("last frame is more than 2 seconds old, restarting camera capture...")
|
||||||
|
self.camera.start_or_restart_capture()
|
||||||
|
time.sleep(5)
|
||||||
|
|
||||||
class Camera:
|
class Camera:
|
||||||
def __init__(self, name, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
|
def __init__(self, name, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
|
||||||
self.name = name
|
self.name = name
|
||||||
@ -136,21 +154,24 @@ class Camera:
|
|||||||
# shape current frame so it can be treated as a numpy image
|
# shape current frame so it can be treated as a numpy image
|
||||||
self.shared_frame_np = tonumpyarray(self.shared_frame_array).reshape(self.frame_shape)
|
self.shared_frame_np = tonumpyarray(self.shared_frame_array).reshape(self.frame_shape)
|
||||||
|
|
||||||
# create the process to capture frames from the RTSP stream and store in a shared array
|
self.capture_process = None
|
||||||
self.capture_process = mp.Process(target=fetch_frames, args=(self.shared_frame_array,
|
|
||||||
self.shared_frame_time, self.frame_lock, self.frame_ready, self.frame_shape, self.rtsp_url))
|
|
||||||
self.capture_process.daemon = True
|
|
||||||
|
|
||||||
# for each region, create a separate thread to resize the region and prep for detection
|
# for each region, create a separate thread to resize the region and prep for detection
|
||||||
self.detection_prep_threads = []
|
self.detection_prep_threads = []
|
||||||
for region in self.config['regions']:
|
for region in self.config['regions']:
|
||||||
|
# set a default threshold of 0.5 if not defined
|
||||||
|
if not 'threshold' in region:
|
||||||
|
region['threshold'] = 0.5
|
||||||
|
if not isinstance(region['threshold'], float):
|
||||||
|
print('Threshold is not a float. Setting to 0.5 default.')
|
||||||
|
region['threshold'] = 0.5
|
||||||
self.detection_prep_threads.append(FramePrepper(
|
self.detection_prep_threads.append(FramePrepper(
|
||||||
self.name,
|
self.name,
|
||||||
self.shared_frame_np,
|
self.shared_frame_np,
|
||||||
self.shared_frame_time,
|
self.shared_frame_time,
|
||||||
self.frame_ready,
|
self.frame_ready,
|
||||||
self.frame_lock,
|
self.frame_lock,
|
||||||
region['size'], region['x_offset'], region['y_offset'],
|
region['size'], region['x_offset'], region['y_offset'], region['threshold'],
|
||||||
prepped_frame_queue
|
prepped_frame_queue
|
||||||
))
|
))
|
||||||
|
|
||||||
@ -171,6 +192,9 @@ class Camera:
|
|||||||
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects)
|
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects)
|
||||||
mqtt_publisher.start()
|
mqtt_publisher.start()
|
||||||
|
|
||||||
|
# create a watchdog thread for capture process
|
||||||
|
self.watchdog = CameraWatchdog(self)
|
||||||
|
|
||||||
# load in the mask for person detection
|
# load in the mask for person detection
|
||||||
if 'mask' in self.config:
|
if 'mask' in self.config:
|
||||||
self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE)
|
self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE)
|
||||||
@ -178,11 +202,28 @@ class Camera:
|
|||||||
self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
|
self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
|
||||||
self.mask[:] = 255
|
self.mask[:] = 255
|
||||||
|
|
||||||
def start(self):
|
|
||||||
|
def start_or_restart_capture(self):
|
||||||
|
if not self.capture_process is None:
|
||||||
|
print("Terminating the existing capture process...")
|
||||||
|
self.capture_process.terminate()
|
||||||
|
del self.capture_process
|
||||||
|
self.capture_process = None
|
||||||
|
|
||||||
|
# create the process to capture frames from the RTSP stream and store in a shared array
|
||||||
|
print("Creating a new capture process...")
|
||||||
|
self.capture_process = mp.Process(target=fetch_frames, args=(self.shared_frame_array,
|
||||||
|
self.shared_frame_time, self.frame_lock, self.frame_ready, self.frame_shape, self.rtsp_url))
|
||||||
|
self.capture_process.daemon = True
|
||||||
|
print("Starting a new capture process...")
|
||||||
self.capture_process.start()
|
self.capture_process.start()
|
||||||
|
|
||||||
|
def start(self):
|
||||||
|
self.start_or_restart_capture()
|
||||||
# start the object detection prep threads
|
# start the object detection prep threads
|
||||||
for detection_prep_thread in self.detection_prep_threads:
|
for detection_prep_thread in self.detection_prep_threads:
|
||||||
detection_prep_thread.start()
|
detection_prep_thread.start()
|
||||||
|
self.watchdog.start()
|
||||||
|
|
||||||
def join(self):
|
def join(self):
|
||||||
self.capture_process.join()
|
self.capture_process.join()
|
||||||
|
Loading…
Reference in New Issue
Block a user