Adding Models

This commit is contained in:
OmriAx 2025-01-09 14:26:56 +02:00
parent 0c4ea504d8
commit eadd55eec6

View File

@ -1,6 +1,7 @@
import logging
import os
import urllib.request
from typing import Optional
import numpy as np
@ -31,38 +32,46 @@ logger = logging.getLogger(__name__)
# Define the detector key for Hailo
DETECTOR_KEY = "hailo8l"
# Configuration class for model settings
class ModelConfig(BaseModel):
path: str = Field(default=None, title="Model Path") # Path to the HEF file
path: Optional[str] = Field(default=None, title="Model Path")
type: str = Field(default="ssd_mobilenet_v1", title="Model Type")
url: str = Field(default="", title="Model URL")
width: int = Field(default=300, title="Model Width")
height: int = Field(default=300, title="Model Height")
score_threshold: float = Field(default=0.3, title="Score Threshold")
max_detections: int = Field(default=30, title="Maximum Detections")
input_tensor: str = Field(default="input_tensor", title="Input Tensor Name")
input_pixel_format: str = Field(default="RGB", title="Input Pixel Format")
# Configuration class for Hailo detector
class HailoDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY] # Type of the detector
device: str = Field(default="PCIe", title="Device Type") # Device type (e.g., PCIe)
type: Literal[DETECTOR_KEY]
device: str = Field(default="PCIe", title="Device Type")
model: ModelConfig
# Hailo detector class implementation
class HailoDetector(DetectionApi):
type_key = DETECTOR_KEY # Set the type key to the Hailo detector key
type_key = DETECTOR_KEY
def __init__(self, detector_config: HailoDetectorConfig):
# Initialize device type and model path from the configuration
# Initialize base configuration
self.h8l_device_type = detector_config.device
self.h8l_model_path = detector_config.model.path
self.h8l_model_height = detector_config.model.height
self.h8l_model_width = detector_config.model.width
self.h8l_model_type = detector_config.model.model_type
self.h8l_model_type = detector_config.model.type
self.h8l_tensor_format = detector_config.model.input_tensor
self.h8l_pixel_format = detector_config.model.input_pixel_format
self.model_url = "https://hailo-model-zoo.s3.eu-west-2.amazonaws.com/ModelZoo/Compiled/v2.11.0/hailo8l/ssd_mobilenet_v1.hef"
self.model_url = detector_config.model.url
self.score_threshold = detector_config.model.score_threshold
self.max_detections = detector_config.model.max_detections
self.cache_dir = "/config/model_cache/h8l_cache"
self.expected_model_filename = "ssd_mobilenet_v1.hef"
output_type = "FLOAT32"
logger.info(f"Initializing Hailo device as {self.h8l_device_type}")
self.check_and_prepare_model()
try:
# Validate device type
if self.h8l_device_type not in ["PCIe", "M.2"]:
@ -87,7 +96,8 @@ class HailoDetector(DetectionApi):
format_type=self.hef.get_input_vstream_infos()[0].format.type,
)
self.output_vstream_params = OutputVStreamParams.make(
self.network_group, format_type=getattr(FormatType, output_type)
self.network_group,
format_type=FormatType.FLOAT32
)
# Get input and output stream information from the HEF
@ -99,9 +109,8 @@ class HailoDetector(DetectionApi):
logger.debug(f"[__init__] Input Tensor Format: {self.h8l_tensor_format}")
logger.debug(f"[__init__] Input Pixel Format: {self.h8l_pixel_format}")
logger.debug(f"[__init__] Input VStream Info: {self.input_vstream_info[0]}")
logger.debug(
f"[__init__] Output VStream Info: {self.output_vstream_info[0]}"
)
logger.debug(f"[__init__] Output VStream Info: {self.output_vstream_info[0]}")
except HailoRTException as e:
logger.error(f"HailoRTException during initialization: {e}")
raise
@ -110,12 +119,14 @@ class HailoDetector(DetectionApi):
raise
def check_and_prepare_model(self):
# Ensure cache directory exists
"""Download and prepare the model if necessary"""
if not os.path.exists(self.cache_dir):
os.makedirs(self.cache_dir)
# Check for the expected model file
model_file_path = os.path.join(self.cache_dir, self.expected_model_filename)
model_filename = f"{self.h8l_model_type}.hef"
model_file_path = os.path.join(self.cache_dir, model_filename)
self.h8l_model_path = model_file_path
if not os.path.isfile(model_file_path):
logger.info(
f"A model file was not found at {model_file_path}, Downloading one from {self.model_url}."
@ -134,9 +145,7 @@ class HailoDetector(DetectionApi):
)
if tensor_input is None:
raise ValueError(
"[detect_raw] The 'tensor_input' argument must be provided"
)
raise ValueError("[detect_raw] The 'tensor_input' argument must be provided")
# Ensure tensor_input is a numpy array
if isinstance(tensor_input, list):
@ -182,104 +191,132 @@ class HailoDetector(DetectionApi):
logger.error(
f"[detect_raw] Missing output stream {self.output_vstream_info[0].name} in inference results"
)
return np.zeros((20, 6), np.float32)
return np.zeros((self.max_detections, 6), np.float32)
raw_output = raw_output[self.output_vstream_info[0].name][0]
logger.debug(
f"[detect_raw] Raw output for stream {self.output_vstream_info[0].name}: {raw_output}"
)
# Process the raw output
# Process the raw output based on model type
detections = self.process_detections(raw_output)
if len(detections) == 0:
logger.debug(
"[detect_raw] No detections found after processing. Setting default values."
)
return np.zeros((20, 6), np.float32)
return np.zeros((self.max_detections, 6), np.float32)
else:
formatted_detections = detections
if (
formatted_detections.shape[1] != 6
): # Ensure the formatted detections have 6 columns
logger.error(
f"[detect_raw] Unexpected shape for formatted detections: {formatted_detections.shape}. Expected (20, 6)."
)
return np.zeros((20, 6), np.float32)
return formatted_detections
return detections
except HailoRTException as e:
logger.error(f"[detect_raw] HailoRTException during inference: {e}")
return np.zeros((20, 6), np.float32)
return np.zeros((self.max_detections, 6), np.float32)
except Exception as e:
logger.error(f"[detect_raw] Exception during inference: {e}")
return np.zeros((20, 6), np.float32)
return np.zeros((self.max_detections, 6), np.float32)
finally:
logger.debug("[detect_raw] Exiting function")
def process_detections(self, raw_detections, threshold=0.5):
def process_detections(self, raw_detections, threshold=None):
"""Process detections based on model type"""
if threshold is None:
threshold = self.score_threshold
if self.h8l_model_type == "ssd_mobilenet_v1":
return self._process_ssd_detections(raw_detections, threshold)
elif self.h8l_model_type == "yolov8s":
return self._process_yolo_detections(raw_detections, threshold, version=8)
elif self.h8l_model_type == "yolov6n":
return self._process_yolo_detections(raw_detections, threshold, version=6)
else:
logger.error(f"Unsupported model type: {self.h8l_model_type}")
return np.zeros((self.max_detections, 6), np.float32)
def _process_ssd_detections(self, raw_detections, threshold):
"""Process SSD MobileNet detections"""
boxes, scores, classes = [], [], []
num_detections = 0
logger.debug(f"[process_detections] Raw detections: {raw_detections}")
for i, detection_set in enumerate(raw_detections):
if not isinstance(detection_set, np.ndarray) or detection_set.size == 0:
logger.debug(
f"[process_detections] Detection set {i} is empty or not an array, skipping."
)
continue
logger.debug(
f"[process_detections] Detection set {i} shape: {detection_set.shape}"
)
for detection in detection_set:
if detection.shape[0] == 0:
logger.debug(
f"[process_detections] Detection in set {i} is empty, skipping."
)
try:
for detection_set in raw_detections:
if not isinstance(detection_set, np.ndarray) or detection_set.size == 0:
continue
ymin, xmin, ymax, xmax = detection[:4]
score = np.clip(detection[4], 0, 1) # Use np.clip for clarity
for detection in detection_set:
if detection.shape[0] == 0:
continue
if score < threshold:
logger.debug(
f"[process_detections] Detection in set {i} has a score {score} below threshold {threshold}. Skipping."
)
continue
ymin, xmin, ymax, xmax = detection[:4]
score = np.clip(detection[4], 0, 1)
logger.debug(
f"[process_detections] Adding detection with coordinates: ({xmin}, {ymin}), ({xmax}, {ymax}) and score: {score}"
)
if score < threshold:
continue
boxes.append([ymin, xmin, ymax, xmax])
scores.append(score)
classes.append(int(detection[5]))
num_detections += 1
return self._format_output(boxes, scores, classes)
except Exception as e:
logger.error(f"Error processing SSD detections: {e}")
return np.zeros((self.max_detections, 6), np.float32)
def _process_yolo_detections(self, raw_detections, threshold, version):
"""Process YOLO detections (v6 and v8)"""
boxes, scores, classes = [], [], []
try:
detections = raw_detections[0]
for detection in detections:
if version == 8:
confidence = detection[4]
if confidence < threshold:
continue
class_scores = detection[5:]
else: # YOLOv6
class_scores = detection[4:]
confidence = np.max(class_scores)
if confidence < threshold:
continue
x, y, w, h = detection[:4]
# Convert to corner format
ymin = y - h/2
xmin = x - w/2
ymax = y + h/2
xmax = x + w/2
class_id = np.argmax(class_scores)
boxes.append([ymin, xmin, ymax, xmax])
scores.append(score)
classes.append(i)
num_detections += 1
scores.append(confidence)
classes.append(class_id)
logger.debug(
f"[process_detections] Boxes: {boxes}, Scores: {scores}, Classes: {classes}, Num detections: {num_detections}"
)
return self._format_output(boxes, scores, classes)
if num_detections == 0:
logger.debug("[process_detections] No valid detections found.")
return np.zeros((20, 6), np.float32)
except Exception as e:
logger.error(f"Error processing YOLO detections: {e}")
return np.zeros((self.max_detections, 6), np.float32)
combined = np.hstack(
(
np.array(classes)[:, np.newaxis],
np.array(scores)[:, np.newaxis],
np.array(boxes),
)
)
if combined.shape[0] < 20:
padding = np.zeros(
(20 - combined.shape[0], combined.shape[1]), dtype=combined.dtype
)
def _format_output(self, boxes, scores, classes):
"""Format detections to standard output format"""
if not boxes:
return np.zeros((self.max_detections, 6), np.float32)
combined = np.hstack((
np.array(classes)[:, np.newaxis],
np.array(scores)[:, np.newaxis],
np.array(boxes)
))
if combined.shape[0] < self.max_detections:
padding = np.zeros((self.max_detections - combined.shape[0], 6), dtype=np.float32)
combined = np.vstack((combined, padding))
logger.debug(
f"[process_detections] Combined detections (padded to 20 if necessary): {np.array_str(combined, precision=4, suppress_small=True)}"
)
return combined[:20, :6]
else:
combined = combined[:self.max_detections]
return combined