mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-08-13 13:47:36 +02:00
Adding Models
This commit is contained in:
parent
0c4ea504d8
commit
eadd55eec6
@ -1,6 +1,7 @@
|
|||||||
import logging
|
import logging
|
||||||
import os
|
import os
|
||||||
import urllib.request
|
import urllib.request
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
@ -31,38 +32,46 @@ logger = logging.getLogger(__name__)
|
|||||||
# Define the detector key for Hailo
|
# Define the detector key for Hailo
|
||||||
DETECTOR_KEY = "hailo8l"
|
DETECTOR_KEY = "hailo8l"
|
||||||
|
|
||||||
|
|
||||||
# Configuration class for model settings
|
# Configuration class for model settings
|
||||||
class ModelConfig(BaseModel):
|
class ModelConfig(BaseModel):
|
||||||
path: str = Field(default=None, title="Model Path") # Path to the HEF file
|
path: Optional[str] = Field(default=None, title="Model Path")
|
||||||
|
type: str = Field(default="ssd_mobilenet_v1", title="Model Type")
|
||||||
|
url: str = Field(default="", title="Model URL")
|
||||||
|
width: int = Field(default=300, title="Model Width")
|
||||||
|
height: int = Field(default=300, title="Model Height")
|
||||||
|
score_threshold: float = Field(default=0.3, title="Score Threshold")
|
||||||
|
max_detections: int = Field(default=30, title="Maximum Detections")
|
||||||
|
input_tensor: str = Field(default="input_tensor", title="Input Tensor Name")
|
||||||
|
input_pixel_format: str = Field(default="RGB", title="Input Pixel Format")
|
||||||
|
|
||||||
# Configuration class for Hailo detector
|
# Configuration class for Hailo detector
|
||||||
class HailoDetectorConfig(BaseDetectorConfig):
|
class HailoDetectorConfig(BaseDetectorConfig):
|
||||||
type: Literal[DETECTOR_KEY] # Type of the detector
|
type: Literal[DETECTOR_KEY]
|
||||||
device: str = Field(default="PCIe", title="Device Type") # Device type (e.g., PCIe)
|
device: str = Field(default="PCIe", title="Device Type")
|
||||||
|
model: ModelConfig
|
||||||
|
|
||||||
# Hailo detector class implementation
|
# Hailo detector class implementation
|
||||||
class HailoDetector(DetectionApi):
|
class HailoDetector(DetectionApi):
|
||||||
type_key = DETECTOR_KEY # Set the type key to the Hailo detector key
|
type_key = DETECTOR_KEY
|
||||||
|
|
||||||
def __init__(self, detector_config: HailoDetectorConfig):
|
def __init__(self, detector_config: HailoDetectorConfig):
|
||||||
# Initialize device type and model path from the configuration
|
# Initialize base configuration
|
||||||
self.h8l_device_type = detector_config.device
|
self.h8l_device_type = detector_config.device
|
||||||
self.h8l_model_path = detector_config.model.path
|
self.h8l_model_path = detector_config.model.path
|
||||||
self.h8l_model_height = detector_config.model.height
|
self.h8l_model_height = detector_config.model.height
|
||||||
self.h8l_model_width = detector_config.model.width
|
self.h8l_model_width = detector_config.model.width
|
||||||
self.h8l_model_type = detector_config.model.model_type
|
self.h8l_model_type = detector_config.model.type
|
||||||
self.h8l_tensor_format = detector_config.model.input_tensor
|
self.h8l_tensor_format = detector_config.model.input_tensor
|
||||||
self.h8l_pixel_format = detector_config.model.input_pixel_format
|
self.h8l_pixel_format = detector_config.model.input_pixel_format
|
||||||
self.model_url = "https://hailo-model-zoo.s3.eu-west-2.amazonaws.com/ModelZoo/Compiled/v2.11.0/hailo8l/ssd_mobilenet_v1.hef"
|
self.model_url = detector_config.model.url
|
||||||
|
self.score_threshold = detector_config.model.score_threshold
|
||||||
|
self.max_detections = detector_config.model.max_detections
|
||||||
|
|
||||||
self.cache_dir = "/config/model_cache/h8l_cache"
|
self.cache_dir = "/config/model_cache/h8l_cache"
|
||||||
self.expected_model_filename = "ssd_mobilenet_v1.hef"
|
|
||||||
output_type = "FLOAT32"
|
|
||||||
|
|
||||||
logger.info(f"Initializing Hailo device as {self.h8l_device_type}")
|
logger.info(f"Initializing Hailo device as {self.h8l_device_type}")
|
||||||
self.check_and_prepare_model()
|
self.check_and_prepare_model()
|
||||||
|
|
||||||
try:
|
try:
|
||||||
# Validate device type
|
# Validate device type
|
||||||
if self.h8l_device_type not in ["PCIe", "M.2"]:
|
if self.h8l_device_type not in ["PCIe", "M.2"]:
|
||||||
@ -87,7 +96,8 @@ class HailoDetector(DetectionApi):
|
|||||||
format_type=self.hef.get_input_vstream_infos()[0].format.type,
|
format_type=self.hef.get_input_vstream_infos()[0].format.type,
|
||||||
)
|
)
|
||||||
self.output_vstream_params = OutputVStreamParams.make(
|
self.output_vstream_params = OutputVStreamParams.make(
|
||||||
self.network_group, format_type=getattr(FormatType, output_type)
|
self.network_group,
|
||||||
|
format_type=FormatType.FLOAT32
|
||||||
)
|
)
|
||||||
|
|
||||||
# Get input and output stream information from the HEF
|
# Get input and output stream information from the HEF
|
||||||
@ -99,9 +109,8 @@ class HailoDetector(DetectionApi):
|
|||||||
logger.debug(f"[__init__] Input Tensor Format: {self.h8l_tensor_format}")
|
logger.debug(f"[__init__] Input Tensor Format: {self.h8l_tensor_format}")
|
||||||
logger.debug(f"[__init__] Input Pixel Format: {self.h8l_pixel_format}")
|
logger.debug(f"[__init__] Input Pixel Format: {self.h8l_pixel_format}")
|
||||||
logger.debug(f"[__init__] Input VStream Info: {self.input_vstream_info[0]}")
|
logger.debug(f"[__init__] Input VStream Info: {self.input_vstream_info[0]}")
|
||||||
logger.debug(
|
logger.debug(f"[__init__] Output VStream Info: {self.output_vstream_info[0]}")
|
||||||
f"[__init__] Output VStream Info: {self.output_vstream_info[0]}"
|
|
||||||
)
|
|
||||||
except HailoRTException as e:
|
except HailoRTException as e:
|
||||||
logger.error(f"HailoRTException during initialization: {e}")
|
logger.error(f"HailoRTException during initialization: {e}")
|
||||||
raise
|
raise
|
||||||
@ -110,12 +119,14 @@ class HailoDetector(DetectionApi):
|
|||||||
raise
|
raise
|
||||||
|
|
||||||
def check_and_prepare_model(self):
|
def check_and_prepare_model(self):
|
||||||
# Ensure cache directory exists
|
"""Download and prepare the model if necessary"""
|
||||||
if not os.path.exists(self.cache_dir):
|
if not os.path.exists(self.cache_dir):
|
||||||
os.makedirs(self.cache_dir)
|
os.makedirs(self.cache_dir)
|
||||||
|
|
||||||
# Check for the expected model file
|
model_filename = f"{self.h8l_model_type}.hef"
|
||||||
model_file_path = os.path.join(self.cache_dir, self.expected_model_filename)
|
model_file_path = os.path.join(self.cache_dir, model_filename)
|
||||||
|
self.h8l_model_path = model_file_path
|
||||||
|
|
||||||
if not os.path.isfile(model_file_path):
|
if not os.path.isfile(model_file_path):
|
||||||
logger.info(
|
logger.info(
|
||||||
f"A model file was not found at {model_file_path}, Downloading one from {self.model_url}."
|
f"A model file was not found at {model_file_path}, Downloading one from {self.model_url}."
|
||||||
@ -134,9 +145,7 @@ class HailoDetector(DetectionApi):
|
|||||||
)
|
)
|
||||||
|
|
||||||
if tensor_input is None:
|
if tensor_input is None:
|
||||||
raise ValueError(
|
raise ValueError("[detect_raw] The 'tensor_input' argument must be provided")
|
||||||
"[detect_raw] The 'tensor_input' argument must be provided"
|
|
||||||
)
|
|
||||||
|
|
||||||
# Ensure tensor_input is a numpy array
|
# Ensure tensor_input is a numpy array
|
||||||
if isinstance(tensor_input, list):
|
if isinstance(tensor_input, list):
|
||||||
@ -182,104 +191,132 @@ class HailoDetector(DetectionApi):
|
|||||||
logger.error(
|
logger.error(
|
||||||
f"[detect_raw] Missing output stream {self.output_vstream_info[0].name} in inference results"
|
f"[detect_raw] Missing output stream {self.output_vstream_info[0].name} in inference results"
|
||||||
)
|
)
|
||||||
return np.zeros((20, 6), np.float32)
|
return np.zeros((self.max_detections, 6), np.float32)
|
||||||
|
|
||||||
raw_output = raw_output[self.output_vstream_info[0].name][0]
|
raw_output = raw_output[self.output_vstream_info[0].name][0]
|
||||||
logger.debug(
|
logger.debug(
|
||||||
f"[detect_raw] Raw output for stream {self.output_vstream_info[0].name}: {raw_output}"
|
f"[detect_raw] Raw output for stream {self.output_vstream_info[0].name}: {raw_output}"
|
||||||
)
|
)
|
||||||
|
|
||||||
# Process the raw output
|
# Process the raw output based on model type
|
||||||
detections = self.process_detections(raw_output)
|
detections = self.process_detections(raw_output)
|
||||||
if len(detections) == 0:
|
if len(detections) == 0:
|
||||||
logger.debug(
|
logger.debug(
|
||||||
"[detect_raw] No detections found after processing. Setting default values."
|
"[detect_raw] No detections found after processing. Setting default values."
|
||||||
)
|
)
|
||||||
return np.zeros((20, 6), np.float32)
|
return np.zeros((self.max_detections, 6), np.float32)
|
||||||
else:
|
else:
|
||||||
formatted_detections = detections
|
return detections
|
||||||
if (
|
|
||||||
formatted_detections.shape[1] != 6
|
|
||||||
): # Ensure the formatted detections have 6 columns
|
|
||||||
logger.error(
|
|
||||||
f"[detect_raw] Unexpected shape for formatted detections: {formatted_detections.shape}. Expected (20, 6)."
|
|
||||||
)
|
|
||||||
return np.zeros((20, 6), np.float32)
|
|
||||||
return formatted_detections
|
|
||||||
except HailoRTException as e:
|
except HailoRTException as e:
|
||||||
logger.error(f"[detect_raw] HailoRTException during inference: {e}")
|
logger.error(f"[detect_raw] HailoRTException during inference: {e}")
|
||||||
return np.zeros((20, 6), np.float32)
|
return np.zeros((self.max_detections, 6), np.float32)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"[detect_raw] Exception during inference: {e}")
|
logger.error(f"[detect_raw] Exception during inference: {e}")
|
||||||
return np.zeros((20, 6), np.float32)
|
return np.zeros((self.max_detections, 6), np.float32)
|
||||||
finally:
|
finally:
|
||||||
logger.debug("[detect_raw] Exiting function")
|
logger.debug("[detect_raw] Exiting function")
|
||||||
|
|
||||||
def process_detections(self, raw_detections, threshold=0.5):
|
def process_detections(self, raw_detections, threshold=None):
|
||||||
|
"""Process detections based on model type"""
|
||||||
|
if threshold is None:
|
||||||
|
threshold = self.score_threshold
|
||||||
|
|
||||||
|
if self.h8l_model_type == "ssd_mobilenet_v1":
|
||||||
|
return self._process_ssd_detections(raw_detections, threshold)
|
||||||
|
elif self.h8l_model_type == "yolov8s":
|
||||||
|
return self._process_yolo_detections(raw_detections, threshold, version=8)
|
||||||
|
elif self.h8l_model_type == "yolov6n":
|
||||||
|
return self._process_yolo_detections(raw_detections, threshold, version=6)
|
||||||
|
else:
|
||||||
|
logger.error(f"Unsupported model type: {self.h8l_model_type}")
|
||||||
|
return np.zeros((self.max_detections, 6), np.float32)
|
||||||
|
|
||||||
|
def _process_ssd_detections(self, raw_detections, threshold):
|
||||||
|
"""Process SSD MobileNet detections"""
|
||||||
boxes, scores, classes = [], [], []
|
boxes, scores, classes = [], [], []
|
||||||
num_detections = 0
|
num_detections = 0
|
||||||
|
|
||||||
logger.debug(f"[process_detections] Raw detections: {raw_detections}")
|
try:
|
||||||
|
for detection_set in raw_detections:
|
||||||
for i, detection_set in enumerate(raw_detections):
|
if not isinstance(detection_set, np.ndarray) or detection_set.size == 0:
|
||||||
if not isinstance(detection_set, np.ndarray) or detection_set.size == 0:
|
|
||||||
logger.debug(
|
|
||||||
f"[process_detections] Detection set {i} is empty or not an array, skipping."
|
|
||||||
)
|
|
||||||
continue
|
|
||||||
|
|
||||||
logger.debug(
|
|
||||||
f"[process_detections] Detection set {i} shape: {detection_set.shape}"
|
|
||||||
)
|
|
||||||
|
|
||||||
for detection in detection_set:
|
|
||||||
if detection.shape[0] == 0:
|
|
||||||
logger.debug(
|
|
||||||
f"[process_detections] Detection in set {i} is empty, skipping."
|
|
||||||
)
|
|
||||||
continue
|
continue
|
||||||
|
|
||||||
ymin, xmin, ymax, xmax = detection[:4]
|
for detection in detection_set:
|
||||||
score = np.clip(detection[4], 0, 1) # Use np.clip for clarity
|
if detection.shape[0] == 0:
|
||||||
|
continue
|
||||||
|
|
||||||
if score < threshold:
|
ymin, xmin, ymax, xmax = detection[:4]
|
||||||
logger.debug(
|
score = np.clip(detection[4], 0, 1)
|
||||||
f"[process_detections] Detection in set {i} has a score {score} below threshold {threshold}. Skipping."
|
|
||||||
)
|
if score < threshold:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
|
boxes.append([ymin, xmin, ymax, xmax])
|
||||||
|
scores.append(score)
|
||||||
|
classes.append(int(detection[5]))
|
||||||
|
num_detections += 1
|
||||||
|
|
||||||
|
return self._format_output(boxes, scores, classes)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error processing SSD detections: {e}")
|
||||||
|
return np.zeros((self.max_detections, 6), np.float32)
|
||||||
|
|
||||||
|
def _process_yolo_detections(self, raw_detections, threshold, version):
|
||||||
|
"""Process YOLO detections (v6 and v8)"""
|
||||||
|
boxes, scores, classes = [], [], []
|
||||||
|
|
||||||
|
try:
|
||||||
|
detections = raw_detections[0]
|
||||||
|
|
||||||
|
for detection in detections:
|
||||||
|
if version == 8:
|
||||||
|
confidence = detection[4]
|
||||||
|
if confidence < threshold:
|
||||||
|
continue
|
||||||
|
class_scores = detection[5:]
|
||||||
|
else: # YOLOv6
|
||||||
|
class_scores = detection[4:]
|
||||||
|
confidence = np.max(class_scores)
|
||||||
|
if confidence < threshold:
|
||||||
|
continue
|
||||||
|
|
||||||
|
x, y, w, h = detection[:4]
|
||||||
|
|
||||||
|
# Convert to corner format
|
||||||
|
ymin = y - h/2
|
||||||
|
xmin = x - w/2
|
||||||
|
ymax = y + h/2
|
||||||
|
xmax = x + w/2
|
||||||
|
|
||||||
|
class_id = np.argmax(class_scores)
|
||||||
|
|
||||||
logger.debug(
|
|
||||||
f"[process_detections] Adding detection with coordinates: ({xmin}, {ymin}), ({xmax}, {ymax}) and score: {score}"
|
|
||||||
)
|
|
||||||
boxes.append([ymin, xmin, ymax, xmax])
|
boxes.append([ymin, xmin, ymax, xmax])
|
||||||
scores.append(score)
|
scores.append(confidence)
|
||||||
classes.append(i)
|
classes.append(class_id)
|
||||||
num_detections += 1
|
|
||||||
|
|
||||||
logger.debug(
|
return self._format_output(boxes, scores, classes)
|
||||||
f"[process_detections] Boxes: {boxes}, Scores: {scores}, Classes: {classes}, Num detections: {num_detections}"
|
|
||||||
)
|
|
||||||
|
|
||||||
if num_detections == 0:
|
except Exception as e:
|
||||||
logger.debug("[process_detections] No valid detections found.")
|
logger.error(f"Error processing YOLO detections: {e}")
|
||||||
return np.zeros((20, 6), np.float32)
|
return np.zeros((self.max_detections, 6), np.float32)
|
||||||
|
|
||||||
combined = np.hstack(
|
def _format_output(self, boxes, scores, classes):
|
||||||
(
|
"""Format detections to standard output format"""
|
||||||
np.array(classes)[:, np.newaxis],
|
if not boxes:
|
||||||
np.array(scores)[:, np.newaxis],
|
return np.zeros((self.max_detections, 6), np.float32)
|
||||||
np.array(boxes),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
if combined.shape[0] < 20:
|
combined = np.hstack((
|
||||||
padding = np.zeros(
|
np.array(classes)[:, np.newaxis],
|
||||||
(20 - combined.shape[0], combined.shape[1]), dtype=combined.dtype
|
np.array(scores)[:, np.newaxis],
|
||||||
)
|
np.array(boxes)
|
||||||
|
))
|
||||||
|
|
||||||
|
if combined.shape[0] < self.max_detections:
|
||||||
|
padding = np.zeros((self.max_detections - combined.shape[0], 6), dtype=np.float32)
|
||||||
combined = np.vstack((combined, padding))
|
combined = np.vstack((combined, padding))
|
||||||
|
else:
|
||||||
|
combined = combined[:self.max_detections]
|
||||||
|
|
||||||
logger.debug(
|
return combined
|
||||||
f"[process_detections] Combined detections (padded to 20 if necessary): {np.array_str(combined, precision=4, suppress_small=True)}"
|
|
||||||
)
|
|
||||||
|
|
||||||
return combined[:20, :6]
|
|
Loading…
Reference in New Issue
Block a user