add support for a minimum object size

This commit is contained in:
blakeblackshear 2019-02-09 20:38:11 -06:00
parent 51e8a8300f
commit ebd15489b0

View File

@ -25,8 +25,8 @@ PATH_TO_LABELS = '/label_map.pbtext'
# TODO: make dynamic? # TODO: make dynamic?
NUM_CLASSES = 90 NUM_CLASSES = 90
# REGIONS = "350,0,300:400,350,250:400,750,250" # REGIONS = "350,0,300,50:400,350,250,50:400,750,250,50"
# REGIONS = "400,350,250" # REGIONS = "400,350,250,50"
REGIONS = os.getenv('REGIONS') REGIONS = os.getenv('REGIONS')
DETECTED_OBJECTS = [] DETECTED_OBJECTS = []
@ -106,7 +106,8 @@ def main():
regions.append({ regions.append({
'size': int(region_parts[0]), 'size': int(region_parts[0]),
'x_offset': int(region_parts[1]), 'x_offset': int(region_parts[1]),
'y_offset': int(region_parts[2]) 'y_offset': int(region_parts[2]),
'min_object_size': int(region_parts[3])
}) })
# capture a single frame and check the frame shape so the correct array # capture a single frame and check the frame shape so the correct array
# size can be allocated in memory # size can be allocated in memory
@ -164,7 +165,8 @@ def main():
shared_memory_objects[index]['ready_for_frame'], shared_memory_objects[index]['ready_for_frame'],
shared_memory_objects[index]['motion_detected'], shared_memory_objects[index]['motion_detected'],
frame_shape, frame_shape,
region['size'], region['x_offset'], region['y_offset'])) region['size'], region['x_offset'], region['y_offset'],
region['min_object_size']))
motion_process.daemon = True motion_process.daemon = True
motion_processes.append(motion_process) motion_processes.append(motion_process)
@ -334,7 +336,7 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_moti
shared_output_arr[:] = objects + [0.0] * (60-len(objects)) shared_output_arr[:] = objects + [0.0] * (60-len(objects))
# do the actual object detection # do the actual object detection
def detect_motion(shared_arr, shared_frame_time, ready_for_frame, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset): def detect_motion(shared_arr, shared_frame_time, ready_for_frame, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area):
# shape shared input array into frame for processing # shape shared input array into frame for processing
arr = tonumpyarray(shared_arr).reshape(frame_shape) arr = tonumpyarray(shared_arr).reshape(frame_shape)
@ -405,18 +407,12 @@ def detect_motion(shared_arr, shared_frame_time, ready_for_frame, shared_motion,
# loop over the contours # loop over the contours
for c in cnts: for c in cnts:
# if the contour is too small, ignore it # if the contour is big enough report motion
if cv2.contourArea(c) < 50: if cv2.contourArea(c) > min_motion_area:
continue last_motion = now
shared_motion.value = 1
break
last_motion = now
shared_motion.value = 1
# compute the bounding box for the contour, draw it on the frame,
# and update the text
# (x, y, w, h) = cv2.boundingRect(c)
# cv2.rectangle(cropped_frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
# cv2.imwrite("motion%d.jpg" % frame_time, cropped_frame)
if __name__ == '__main__': if __name__ == '__main__':
mp.freeze_support() mp.freeze_support()
main() main()