mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
Fix bug in intersection logic (#6780)
* Fix bug in intersection logic * Fix isort * Remove unrelated test * Formatting * Fix type in test
This commit is contained in:
parent
ff90db30e6
commit
ec4d79eafc
@ -5,6 +5,7 @@ import numpy as np
|
|||||||
from norfair.drawing.color import Palette
|
from norfair.drawing.color import Palette
|
||||||
from norfair.drawing.drawer import Drawer
|
from norfair.drawing.drawer import Drawer
|
||||||
|
|
||||||
|
from frigate.util import intersection
|
||||||
from frigate.video import (
|
from frigate.video import (
|
||||||
get_cluster_boundary,
|
get_cluster_boundary,
|
||||||
get_cluster_candidates,
|
get_cluster_candidates,
|
||||||
@ -63,7 +64,7 @@ def save_cluster_boundary_image(name, boxes, bounding_boxes):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
class TestConfig(unittest.TestCase):
|
class TestRegion(unittest.TestCase):
|
||||||
def setUp(self):
|
def setUp(self):
|
||||||
self.frame_shape = (1000, 2000)
|
self.frame_shape = (1000, 2000)
|
||||||
self.min_region_size = 160
|
self.min_region_size = 160
|
||||||
@ -176,3 +177,16 @@ class TestConfig(unittest.TestCase):
|
|||||||
|
|
||||||
# save_clusters_image("dont_combine", boxes, cluster_candidates, regions)
|
# save_clusters_image("dont_combine", boxes, cluster_candidates, regions)
|
||||||
assert len(regions) == 2
|
assert len(regions) == 2
|
||||||
|
|
||||||
|
|
||||||
|
class TestObjectBoundingBoxes(unittest.TestCase):
|
||||||
|
def setUp(self) -> None:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def test_box_intersection(self):
|
||||||
|
box_a = [2012, 191, 2031, 205]
|
||||||
|
box_b = [887, 92, 985, 151]
|
||||||
|
box_c = [899, 128, 1080, 175]
|
||||||
|
|
||||||
|
assert intersection(box_a, box_b) == None
|
||||||
|
assert intersection(box_b, box_c) == (899, 128, 985, 151)
|
||||||
|
@ -572,7 +572,16 @@ def yuv_region_2_bgr(frame, region):
|
|||||||
raise
|
raise
|
||||||
|
|
||||||
|
|
||||||
def intersection(box_a, box_b):
|
def intersection(box_a, box_b) -> Optional[list[int]]:
|
||||||
|
"""Return intersection box or None if boxes do not intersect."""
|
||||||
|
if (
|
||||||
|
box_a[2] < box_b[0]
|
||||||
|
or box_a[0] > box_b[2]
|
||||||
|
or box_a[1] > box_b[3]
|
||||||
|
or box_a[3] < box_b[1]
|
||||||
|
):
|
||||||
|
return None
|
||||||
|
|
||||||
return (
|
return (
|
||||||
max(box_a[0], box_b[0]),
|
max(box_a[0], box_b[0]),
|
||||||
max(box_a[1], box_b[1]),
|
max(box_a[1], box_b[1]),
|
||||||
@ -589,6 +598,9 @@ def intersection_over_union(box_a, box_b):
|
|||||||
# determine the (x, y)-coordinates of the intersection rectangle
|
# determine the (x, y)-coordinates of the intersection rectangle
|
||||||
intersect = intersection(box_a, box_b)
|
intersect = intersection(box_a, box_b)
|
||||||
|
|
||||||
|
if intersect is None:
|
||||||
|
return 0.0
|
||||||
|
|
||||||
# compute the area of intersection rectangle
|
# compute the area of intersection rectangle
|
||||||
inter_area = max(0, intersect[2] - intersect[0] + 1) * max(
|
inter_area = max(0, intersect[2] - intersect[0] + 1) * max(
|
||||||
0, intersect[3] - intersect[1] + 1
|
0, intersect[3] - intersect[1] + 1
|
||||||
|
@ -669,6 +669,40 @@ def get_cluster_region(frame_shape, min_region, cluster, boxes):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_consolidated_object_detections(detected_object_groups):
|
||||||
|
"""Drop detections that overlap too much"""
|
||||||
|
consolidated_detections = []
|
||||||
|
for group in detected_object_groups.values():
|
||||||
|
# if the group only has 1 item, skip
|
||||||
|
if len(group) == 1:
|
||||||
|
consolidated_detections.append(group[0])
|
||||||
|
continue
|
||||||
|
|
||||||
|
# sort smallest to largest by area
|
||||||
|
sorted_by_area = sorted(group, key=lambda g: g[3])
|
||||||
|
|
||||||
|
for current_detection_idx in range(0, len(sorted_by_area)):
|
||||||
|
current_detection = sorted_by_area[current_detection_idx][2]
|
||||||
|
overlap = 0
|
||||||
|
for to_check_idx in range(
|
||||||
|
min(current_detection_idx + 1, len(sorted_by_area)),
|
||||||
|
len(sorted_by_area),
|
||||||
|
):
|
||||||
|
to_check = sorted_by_area[to_check_idx][2]
|
||||||
|
intersect_box = intersection(current_detection, to_check)
|
||||||
|
# if 90% of smaller detection is inside of another detection, consolidate
|
||||||
|
if (
|
||||||
|
intersect_box is not None
|
||||||
|
and area(intersect_box) / area(current_detection) > 0.9
|
||||||
|
):
|
||||||
|
overlap = 1
|
||||||
|
break
|
||||||
|
if overlap == 0:
|
||||||
|
consolidated_detections.append(sorted_by_area[current_detection_idx])
|
||||||
|
|
||||||
|
return consolidated_detections
|
||||||
|
|
||||||
|
|
||||||
def process_frames(
|
def process_frames(
|
||||||
camera_name: str,
|
camera_name: str,
|
||||||
frame_queue: mp.Queue,
|
frame_queue: mp.Queue,
|
||||||
@ -849,9 +883,6 @@ def process_frames(
|
|||||||
# set the detections list to only include top objects
|
# set the detections list to only include top objects
|
||||||
detections = selected_objects
|
detections = selected_objects
|
||||||
|
|
||||||
## drop detections that overlap too much
|
|
||||||
consolidated_detections = []
|
|
||||||
|
|
||||||
# if detection was run on this frame, consolidate
|
# if detection was run on this frame, consolidate
|
||||||
if len(regions) > 0:
|
if len(regions) > 0:
|
||||||
# group by name
|
# group by name
|
||||||
@ -859,35 +890,8 @@ def process_frames(
|
|||||||
for detection in detections:
|
for detection in detections:
|
||||||
detected_object_groups[detection[0]].append(detection)
|
detected_object_groups[detection[0]].append(detection)
|
||||||
|
|
||||||
# loop over detections grouped by label
|
consolidated_detections = get_consolidated_object_detections(
|
||||||
for group in detected_object_groups.values():
|
detected_object_groups
|
||||||
# if the group only has 1 item, skip
|
|
||||||
if len(group) == 1:
|
|
||||||
consolidated_detections.append(group[0])
|
|
||||||
continue
|
|
||||||
|
|
||||||
# sort smallest to largest by area
|
|
||||||
sorted_by_area = sorted(group, key=lambda g: g[3])
|
|
||||||
|
|
||||||
for current_detection_idx in range(0, len(sorted_by_area)):
|
|
||||||
current_detection = sorted_by_area[current_detection_idx][2]
|
|
||||||
overlap = 0
|
|
||||||
for to_check_idx in range(
|
|
||||||
min(current_detection_idx + 1, len(sorted_by_area)),
|
|
||||||
len(sorted_by_area),
|
|
||||||
):
|
|
||||||
to_check = sorted_by_area[to_check_idx][2]
|
|
||||||
# if 90% of smaller detection is inside of another detection, consolidate
|
|
||||||
if (
|
|
||||||
area(intersection(current_detection, to_check))
|
|
||||||
/ area(current_detection)
|
|
||||||
> 0.9
|
|
||||||
):
|
|
||||||
overlap = 1
|
|
||||||
break
|
|
||||||
if overlap == 0:
|
|
||||||
consolidated_detections.append(
|
|
||||||
sorted_by_area[current_detection_idx]
|
|
||||||
)
|
)
|
||||||
# now that we have refined our detections, we need to track objects
|
# now that we have refined our detections, we need to track objects
|
||||||
object_tracker.match_and_update(frame_time, consolidated_detections)
|
object_tracker.match_and_update(frame_time, consolidated_detections)
|
||||||
|
Loading…
Reference in New Issue
Block a user