Add Deepstack/CodeProject-AI.Server detector plugin (#6143)

* Add Deepstack detector plugin with configurable API URL, timeout, and API key

* Update DeepStack plugin to recognize 'truck' as 'car' for label indexing

* Add debug logging to DeepStack plugin for better monitoring and troubleshooting

* Refactor DeepStack label loading from file to use merged labelmap

* Black format

* add documentation draft

* fix link to codeproject website

* Apply suggestions from code review

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>

---------

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
This commit is contained in:
Sergey Krashevich 2023-05-05 02:06:07 +03:00 committed by GitHub
parent 0751358e5b
commit ede1dedbbd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 100 additions and 0 deletions

View File

@ -256,3 +256,25 @@ model:
width: 416
height: 416
```
## Deepstack / CodeProject.AI Server Detector
The Deepstack / CodeProject.AI Server detector for Frigate allows you to integrate Deepstack and CodeProject.AI object detection capabilities into Frigate. CodeProject.AI and DeepStack are open-source AI platforms that can be run on various devices such as the Raspberry Pi, Nvidia Jetson, and other compatible hardware. It is important to note that the integration is performed over the network, so the inference times may not be as fast as native Frigate detectors, but it still provides an efficient and reliable solution for object detection and tracking.
### Setup
To get started with CodeProject.AI, visit their [official website](https://www.codeproject.com/Articles/5322557/CodeProject-AI-Server-AI-the-easy-way) to follow the instructions to download and install the AI server on your preferred device. Detailed setup instructions for CodeProject.AI are outside the scope of the Frigate documentation.
To integrate CodeProject.AI into Frigate, you'll need to make the following changes to your Frigate configuration file:
```yaml
detectors:
deepstack:
api_url: http://<your_codeproject_ai_server_ip>:<port>/v1/vision/detection
type: deepstack
api_timeout: 0.1 # seconds
```
Replace `<your_codeproject_ai_server_ip>` and `<port>` with the IP address and port of your CodeProject.AI server.
To verify that the integration is working correctly, start Frigate and observe the logs for any error messages related to CodeProject.AI. Additionally, you can check the Frigate web interface to see if the objects detected by CodeProject.AI are being displayed and tracked properly.

View File

@ -0,0 +1,78 @@
import logging
import numpy as np
import requests
import io
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig
from typing import Literal
from pydantic import Extra, Field
from PIL import Image
logger = logging.getLogger(__name__)
DETECTOR_KEY = "deepstack"
class DeepstackDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
api_url: str = Field(
default="http://localhost:80/v1/vision/detection", title="DeepStack API URL"
)
api_timeout: float = Field(default=0.1, title="DeepStack API timeout (in seconds)")
api_key: str = Field(default="", title="DeepStack API key (if required)")
class DeepStack(DetectionApi):
type_key = DETECTOR_KEY
def __init__(self, detector_config: DeepstackDetectorConfig):
self.api_url = detector_config.api_url
self.api_timeout = detector_config.api_timeout
self.api_key = detector_config.api_key
self.labels = detector_config.model.merged_labelmap
self.h = detector_config.model.height
self.w = detector_config.model.width
def get_label_index(self, label_value):
if label_value.lower() == "truck":
label_value = "car"
for index, value in self.labels.items():
if value == label_value.lower():
return index
return -1
def detect_raw(self, tensor_input):
image_data = np.squeeze(tensor_input).astype(np.uint8)
image = Image.fromarray(image_data)
with io.BytesIO() as output:
image.save(output, format="JPEG")
image_bytes = output.getvalue()
data = {"api_key": self.api_key}
response = requests.post(
self.api_url, files={"image": image_bytes}, timeout=self.api_timeout
)
response_json = response.json()
detections = np.zeros((20, 6), np.float32)
for i, detection in enumerate(response_json["predictions"]):
logger.debug(f"Response: {detection}")
if detection["confidence"] < 0.4:
logger.debug(f"Break due to confidence < 0.4")
break
label = self.get_label_index(detection["label"])
if label < 0:
logger.debug(f"Break due to unknown label")
break
detections[i] = [
label,
float(detection["confidence"]),
detection["y_min"] / self.h,
detection["x_min"] / self.w,
detection["y_max"] / self.h,
detection["x_max"] / self.w,
]
return detections