mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	Merge pull request #5 from blakeblackshear/motion_masking
Motion masking
This commit is contained in:
		
						commit
						eded4d172f
					
				@ -44,7 +44,7 @@ Access the mjpeg stream at http://localhost:5000
 | 
				
			|||||||
- [x] Add last will and availability for MQTT
 | 
					- [x] Add last will and availability for MQTT
 | 
				
			||||||
- [ ] Add ability to turn detection on and off via MQTT
 | 
					- [ ] Add ability to turn detection on and off via MQTT
 | 
				
			||||||
- [ ] Add a max size for motion and objects (height/width > 1.5, total area > 1500 and < 100,000)
 | 
					- [ ] Add a max size for motion and objects (height/width > 1.5, total area > 1500 and < 100,000)
 | 
				
			||||||
- [ ] Make motion less sensitive to rain
 | 
					- [x] Make motion less sensitive to rain
 | 
				
			||||||
- [x] Use Events or Conditions to signal between threads rather than polling a value
 | 
					- [x] Use Events or Conditions to signal between threads rather than polling a value
 | 
				
			||||||
- [ ] Implement a debug option to save images with detected objects
 | 
					- [ ] Implement a debug option to save images with detected objects
 | 
				
			||||||
- [ ] Only report if x% of the recent frames have a person to avoid single frame false positives (maybe take an average of the person scores in the past x frames?)
 | 
					- [ ] Only report if x% of the recent frames have a person to avoid single frame false positives (maybe take an average of the person scores in the past x frames?)
 | 
				
			||||||
@ -53,7 +53,7 @@ Access the mjpeg stream at http://localhost:5000
 | 
				
			|||||||
- [ ] Merge bounding boxes that span multiple regions
 | 
					- [ ] Merge bounding boxes that span multiple regions
 | 
				
			||||||
- [ ] Switch to a config file
 | 
					- [ ] Switch to a config file
 | 
				
			||||||
- [ ] Allow motion regions to be different than object detection regions
 | 
					- [ ] Allow motion regions to be different than object detection regions
 | 
				
			||||||
- [ ] Add motion detection masking
 | 
					- [x] Add motion detection masking
 | 
				
			||||||
- [x] Change color of bounding box if motion detected
 | 
					- [x] Change color of bounding box if motion detected
 | 
				
			||||||
- [x] Look for a subset of object types
 | 
					- [x] Look for a subset of object types
 | 
				
			||||||
- [ ] Try and reduce CPU usage by simplifying the tensorflow model to just include the objects we care about
 | 
					- [ ] Try and reduce CPU usage by simplifying the tensorflow model to just include the objects we care about
 | 
				
			||||||
 | 
				
			|||||||
							
								
								
									
										
											BIN
										
									
								
								config/mask-0-300.bmp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								config/mask-0-300.bmp
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| 
		 After Width: | Height: | Size: 239 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								config/mask-350-250.bmp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								config/mask-350-250.bmp
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| 
		 After Width: | Height: | Size: 313 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								config/mask-750-250.bmp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								config/mask-750-250.bmp
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| 
		 After Width: | Height: | Size: 313 KiB  | 
@ -190,11 +190,14 @@ def main():
 | 
				
			|||||||
    regions = []
 | 
					    regions = []
 | 
				
			||||||
    for region_string in REGIONS.split(':'):
 | 
					    for region_string in REGIONS.split(':'):
 | 
				
			||||||
        region_parts = region_string.split(',')
 | 
					        region_parts = region_string.split(',')
 | 
				
			||||||
 | 
					        region_mask_image = cv2.imread("/config/{}".format(region_parts[4]), cv2.IMREAD_GRAYSCALE)
 | 
				
			||||||
 | 
					        region_mask = np.where(region_mask_image==[0])
 | 
				
			||||||
        regions.append({
 | 
					        regions.append({
 | 
				
			||||||
            'size': int(region_parts[0]),
 | 
					            'size': int(region_parts[0]),
 | 
				
			||||||
            'x_offset': int(region_parts[1]),
 | 
					            'x_offset': int(region_parts[1]),
 | 
				
			||||||
            'y_offset': int(region_parts[2]),
 | 
					            'y_offset': int(region_parts[2]),
 | 
				
			||||||
            'min_object_size': int(region_parts[3]),
 | 
					            'min_object_size': int(region_parts[3]),
 | 
				
			||||||
 | 
					            'mask': region_mask,
 | 
				
			||||||
            # Event for motion detection signaling
 | 
					            # Event for motion detection signaling
 | 
				
			||||||
            'motion_detected': mp.Event(),
 | 
					            'motion_detected': mp.Event(),
 | 
				
			||||||
            # create shared array for storing 10 detected objects
 | 
					            # create shared array for storing 10 detected objects
 | 
				
			||||||
@ -259,7 +262,7 @@ def main():
 | 
				
			|||||||
            motion_changed,
 | 
					            motion_changed,
 | 
				
			||||||
            frame_shape, 
 | 
					            frame_shape, 
 | 
				
			||||||
            region['size'], region['x_offset'], region['y_offset'],
 | 
					            region['size'], region['x_offset'], region['y_offset'],
 | 
				
			||||||
            region['min_object_size'],
 | 
					            region['min_object_size'], region['mask'],
 | 
				
			||||||
            True))
 | 
					            True))
 | 
				
			||||||
        motion_process.daemon = True
 | 
					        motion_process.daemon = True
 | 
				
			||||||
        motion_processes.append(motion_process)
 | 
					        motion_processes.append(motion_process)
 | 
				
			||||||
@ -426,22 +429,16 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_lock,
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
# do the actual motion detection
 | 
					# do the actual motion detection
 | 
				
			||||||
def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, motion_detected, motion_changed,
 | 
					def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, motion_detected, motion_changed,
 | 
				
			||||||
                  frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area, debug):
 | 
					                  frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area, mask, debug):
 | 
				
			||||||
    # shape shared input array into frame for processing
 | 
					    # shape shared input array into frame for processing
 | 
				
			||||||
    arr = tonumpyarray(shared_arr).reshape(frame_shape)
 | 
					    arr = tonumpyarray(shared_arr).reshape(frame_shape)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    avg_frame = None
 | 
					    avg_frame = None
 | 
				
			||||||
    last_motion = -1
 | 
					    avg_delta = None
 | 
				
			||||||
    frame_time = 0.0
 | 
					    frame_time = 0.0
 | 
				
			||||||
    motion_frames = 0
 | 
					    motion_frames = 0
 | 
				
			||||||
    while True:
 | 
					    while True:
 | 
				
			||||||
        now = datetime.datetime.now().timestamp()
 | 
					        now = datetime.datetime.now().timestamp()
 | 
				
			||||||
        # if it has been long enough since the last motion, clear the flag
 | 
					 | 
				
			||||||
        if last_motion > 0 and (now - last_motion) > 2:
 | 
					 | 
				
			||||||
            last_motion = -1
 | 
					 | 
				
			||||||
            motion_detected.clear()
 | 
					 | 
				
			||||||
            with motion_changed:
 | 
					 | 
				
			||||||
                motion_changed.notify_all()
 | 
					 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
        with frame_ready:
 | 
					        with frame_ready:
 | 
				
			||||||
            # if there isnt a frame ready for processing or it is old, wait for a signal
 | 
					            # if there isnt a frame ready for processing or it is old, wait for a signal
 | 
				
			||||||
@ -455,6 +452,10 @@ def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, motion
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        # convert to grayscale
 | 
					        # convert to grayscale
 | 
				
			||||||
        gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
 | 
					        gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # apply image mask to remove areas from motion detection
 | 
				
			||||||
 | 
					        gray[mask] = [255]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # apply gaussian blur
 | 
					        # apply gaussian blur
 | 
				
			||||||
        gray = cv2.GaussianBlur(gray, (21, 21), 0)
 | 
					        gray = cv2.GaussianBlur(gray, (21, 21), 0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -463,15 +464,33 @@ def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, motion
 | 
				
			|||||||
            continue
 | 
					            continue
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
        # look at the delta from the avg_frame
 | 
					        # look at the delta from the avg_frame
 | 
				
			||||||
        cv2.accumulateWeighted(gray, avg_frame, 0.01)
 | 
					 | 
				
			||||||
        frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg_frame))
 | 
					        frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg_frame))
 | 
				
			||||||
        thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
 | 
					        
 | 
				
			||||||
 | 
					        if avg_delta is None:
 | 
				
			||||||
 | 
					            avg_delta = frameDelta.copy().astype("float")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # compute the average delta over the past few frames
 | 
				
			||||||
 | 
					        # the alpha value can be modified to configure how sensitive the motion detection is
 | 
				
			||||||
 | 
					        # higher values mean the current frame impacts the delta a lot, and a single raindrop may
 | 
				
			||||||
 | 
					        # put it over the edge, too low and a fast moving person wont be detected as motion
 | 
				
			||||||
 | 
					        # this also assumes that a person is in the same location across more than a single frame
 | 
				
			||||||
 | 
					        cv2.accumulateWeighted(frameDelta, avg_delta, 0.2)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # compute the threshold image for the current frame
 | 
				
			||||||
 | 
					        current_thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # black out everything in the avg_delta where there isnt motion in the current frame
 | 
				
			||||||
 | 
					        avg_delta_image = cv2.convertScaleAbs(avg_delta)
 | 
				
			||||||
 | 
					        avg_delta_image[np.where(current_thresh==[0])] = [0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # then look for deltas above the threshold, but only in areas where there is a delta
 | 
				
			||||||
 | 
					        # in the current frame. this prevents deltas from previous frames from being included
 | 
				
			||||||
 | 
					        thresh = cv2.threshold(avg_delta_image, 25, 255, cv2.THRESH_BINARY)[1]
 | 
				
			||||||
 
 | 
					 
 | 
				
			||||||
        # dilate the thresholded image to fill in holes, then find contours
 | 
					        # dilate the thresholded image to fill in holes, then find contours
 | 
				
			||||||
        # on thresholded image
 | 
					        # on thresholded image
 | 
				
			||||||
        thresh = cv2.dilate(thresh, None, iterations=2)
 | 
					        thresh = cv2.dilate(thresh, None, iterations=2)
 | 
				
			||||||
        cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
 | 
					        cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
 | 
				
			||||||
            cv2.CHAIN_APPROX_SIMPLE)
 | 
					 | 
				
			||||||
        cnts = imutils.grab_contours(cnts)
 | 
					        cnts = imutils.grab_contours(cnts)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # if there are no contours, there is no motion
 | 
					        # if there are no contours, there is no motion
 | 
				
			||||||
@ -499,15 +518,22 @@ def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, motion
 | 
				
			|||||||
            motion_frames += 1
 | 
					            motion_frames += 1
 | 
				
			||||||
            # if there have been enough consecutive motion frames, report motion
 | 
					            # if there have been enough consecutive motion frames, report motion
 | 
				
			||||||
            if motion_frames >= 3:
 | 
					            if motion_frames >= 3:
 | 
				
			||||||
 | 
					                # only average in the current frame if the difference persists for at least 3 frames
 | 
				
			||||||
 | 
					                cv2.accumulateWeighted(gray, avg_frame, 0.01)
 | 
				
			||||||
                motion_detected.set()
 | 
					                motion_detected.set()
 | 
				
			||||||
                with motion_changed:
 | 
					                with motion_changed:
 | 
				
			||||||
                    motion_changed.notify_all()
 | 
					                    motion_changed.notify_all()
 | 
				
			||||||
                last_motion = now
 | 
					 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
 | 
					            # when no motion, just keep averaging the frames together
 | 
				
			||||||
 | 
					            cv2.accumulateWeighted(gray, avg_frame, 0.01)
 | 
				
			||||||
            motion_frames = 0
 | 
					            motion_frames = 0
 | 
				
			||||||
 | 
					            motion_detected.clear()
 | 
				
			||||||
 | 
					            with motion_changed:
 | 
				
			||||||
 | 
					                motion_changed.notify_all()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if debug and motion_frames >= 3:
 | 
					        if debug and motion_frames >= 3:
 | 
				
			||||||
            cv2.imwrite("/lab/debug/motion-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
 | 
					            cv2.imwrite("/lab/debug/motion-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
 | 
				
			||||||
 | 
					            cv2.imwrite("/lab/debug/avg_delta-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), avg_delta_image)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if __name__ == '__main__':
 | 
					if __name__ == '__main__':
 | 
				
			||||||
    mp.freeze_support()
 | 
					    mp.freeze_support()
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
		Reference in New Issue
	
	Block a user