mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-02-05 00:15:51 +01:00
Merge pull request #5 from blakeblackshear/motion_masking
Motion masking
This commit is contained in:
commit
eded4d172f
@ -44,7 +44,7 @@ Access the mjpeg stream at http://localhost:5000
|
||||
- [x] Add last will and availability for MQTT
|
||||
- [ ] Add ability to turn detection on and off via MQTT
|
||||
- [ ] Add a max size for motion and objects (height/width > 1.5, total area > 1500 and < 100,000)
|
||||
- [ ] Make motion less sensitive to rain
|
||||
- [x] Make motion less sensitive to rain
|
||||
- [x] Use Events or Conditions to signal between threads rather than polling a value
|
||||
- [ ] Implement a debug option to save images with detected objects
|
||||
- [ ] Only report if x% of the recent frames have a person to avoid single frame false positives (maybe take an average of the person scores in the past x frames?)
|
||||
@ -53,7 +53,7 @@ Access the mjpeg stream at http://localhost:5000
|
||||
- [ ] Merge bounding boxes that span multiple regions
|
||||
- [ ] Switch to a config file
|
||||
- [ ] Allow motion regions to be different than object detection regions
|
||||
- [ ] Add motion detection masking
|
||||
- [x] Add motion detection masking
|
||||
- [x] Change color of bounding box if motion detected
|
||||
- [x] Look for a subset of object types
|
||||
- [ ] Try and reduce CPU usage by simplifying the tensorflow model to just include the objects we care about
|
||||
|
BIN
config/mask-0-300.bmp
Normal file
BIN
config/mask-0-300.bmp
Normal file
Binary file not shown.
After Width: | Height: | Size: 239 KiB |
BIN
config/mask-350-250.bmp
Normal file
BIN
config/mask-350-250.bmp
Normal file
Binary file not shown.
After Width: | Height: | Size: 313 KiB |
BIN
config/mask-750-250.bmp
Normal file
BIN
config/mask-750-250.bmp
Normal file
Binary file not shown.
After Width: | Height: | Size: 313 KiB |
@ -190,11 +190,14 @@ def main():
|
||||
regions = []
|
||||
for region_string in REGIONS.split(':'):
|
||||
region_parts = region_string.split(',')
|
||||
region_mask_image = cv2.imread("/config/{}".format(region_parts[4]), cv2.IMREAD_GRAYSCALE)
|
||||
region_mask = np.where(region_mask_image==[0])
|
||||
regions.append({
|
||||
'size': int(region_parts[0]),
|
||||
'x_offset': int(region_parts[1]),
|
||||
'y_offset': int(region_parts[2]),
|
||||
'min_object_size': int(region_parts[3]),
|
||||
'mask': region_mask,
|
||||
# Event for motion detection signaling
|
||||
'motion_detected': mp.Event(),
|
||||
# create shared array for storing 10 detected objects
|
||||
@ -259,7 +262,7 @@ def main():
|
||||
motion_changed,
|
||||
frame_shape,
|
||||
region['size'], region['x_offset'], region['y_offset'],
|
||||
region['min_object_size'],
|
||||
region['min_object_size'], region['mask'],
|
||||
True))
|
||||
motion_process.daemon = True
|
||||
motion_processes.append(motion_process)
|
||||
@ -426,22 +429,16 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_lock,
|
||||
|
||||
# do the actual motion detection
|
||||
def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, motion_detected, motion_changed,
|
||||
frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area, debug):
|
||||
frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area, mask, debug):
|
||||
# shape shared input array into frame for processing
|
||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
|
||||
avg_frame = None
|
||||
last_motion = -1
|
||||
avg_delta = None
|
||||
frame_time = 0.0
|
||||
motion_frames = 0
|
||||
while True:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# if it has been long enough since the last motion, clear the flag
|
||||
if last_motion > 0 and (now - last_motion) > 2:
|
||||
last_motion = -1
|
||||
motion_detected.clear()
|
||||
with motion_changed:
|
||||
motion_changed.notify_all()
|
||||
|
||||
with frame_ready:
|
||||
# if there isnt a frame ready for processing or it is old, wait for a signal
|
||||
@ -455,6 +452,10 @@ def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, motion
|
||||
|
||||
# convert to grayscale
|
||||
gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
# apply image mask to remove areas from motion detection
|
||||
gray[mask] = [255]
|
||||
|
||||
# apply gaussian blur
|
||||
gray = cv2.GaussianBlur(gray, (21, 21), 0)
|
||||
|
||||
@ -463,15 +464,33 @@ def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, motion
|
||||
continue
|
||||
|
||||
# look at the delta from the avg_frame
|
||||
cv2.accumulateWeighted(gray, avg_frame, 0.01)
|
||||
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg_frame))
|
||||
thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
|
||||
|
||||
if avg_delta is None:
|
||||
avg_delta = frameDelta.copy().astype("float")
|
||||
|
||||
# compute the average delta over the past few frames
|
||||
# the alpha value can be modified to configure how sensitive the motion detection is
|
||||
# higher values mean the current frame impacts the delta a lot, and a single raindrop may
|
||||
# put it over the edge, too low and a fast moving person wont be detected as motion
|
||||
# this also assumes that a person is in the same location across more than a single frame
|
||||
cv2.accumulateWeighted(frameDelta, avg_delta, 0.2)
|
||||
|
||||
# compute the threshold image for the current frame
|
||||
current_thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
|
||||
|
||||
# black out everything in the avg_delta where there isnt motion in the current frame
|
||||
avg_delta_image = cv2.convertScaleAbs(avg_delta)
|
||||
avg_delta_image[np.where(current_thresh==[0])] = [0]
|
||||
|
||||
# then look for deltas above the threshold, but only in areas where there is a delta
|
||||
# in the current frame. this prevents deltas from previous frames from being included
|
||||
thresh = cv2.threshold(avg_delta_image, 25, 255, cv2.THRESH_BINARY)[1]
|
||||
|
||||
# dilate the thresholded image to fill in holes, then find contours
|
||||
# on thresholded image
|
||||
thresh = cv2.dilate(thresh, None, iterations=2)
|
||||
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
|
||||
cv2.CHAIN_APPROX_SIMPLE)
|
||||
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||
cnts = imutils.grab_contours(cnts)
|
||||
|
||||
# if there are no contours, there is no motion
|
||||
@ -499,15 +518,22 @@ def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, motion
|
||||
motion_frames += 1
|
||||
# if there have been enough consecutive motion frames, report motion
|
||||
if motion_frames >= 3:
|
||||
# only average in the current frame if the difference persists for at least 3 frames
|
||||
cv2.accumulateWeighted(gray, avg_frame, 0.01)
|
||||
motion_detected.set()
|
||||
with motion_changed:
|
||||
motion_changed.notify_all()
|
||||
last_motion = now
|
||||
else:
|
||||
# when no motion, just keep averaging the frames together
|
||||
cv2.accumulateWeighted(gray, avg_frame, 0.01)
|
||||
motion_frames = 0
|
||||
motion_detected.clear()
|
||||
with motion_changed:
|
||||
motion_changed.notify_all()
|
||||
|
||||
if debug and motion_frames >= 3:
|
||||
cv2.imwrite("/lab/debug/motion-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
|
||||
cv2.imwrite("/lab/debug/avg_delta-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), avg_delta_image)
|
||||
|
||||
if __name__ == '__main__':
|
||||
mp.freeze_support()
|
||||
|
Loading…
Reference in New Issue
Block a user