mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-12-23 19:11:14 +01:00
prep frames for object detection in a separate process
This commit is contained in:
parent
862aa2d3f0
commit
f2c205be99
@ -19,7 +19,7 @@ from frigate.mqtt import MqttMotionPublisher, MqttObjectPublisher
|
||||
from frigate.objects import ObjectParser, ObjectCleaner, BestPersonFrame
|
||||
from frigate.motion import detect_motion
|
||||
from frigate.video import fetch_frames, FrameTracker
|
||||
from frigate.object_detection import detect_objects
|
||||
from frigate.object_detection import prep_for_detection, detect_objects
|
||||
|
||||
RTSP_URL = os.getenv('RTSP_URL')
|
||||
|
||||
@ -85,6 +85,16 @@ def main():
|
||||
objects_parsed = mp.Condition()
|
||||
# Queue for detected objects
|
||||
object_queue = mp.Queue()
|
||||
# array for prepped frame with shape (1, 300, 300, 3)
|
||||
prepped_frame_array = mp.Array(ctypes.c_uint8, 300*300*3)
|
||||
# shared value for storing the prepped_frame_time
|
||||
prepped_frame_time = mp.Value('d', 0.0)
|
||||
# Condition for notifying that a new prepped frame is ready
|
||||
prepped_frame_ready = mp.Condition()
|
||||
# Lock to control access to the prepped frame
|
||||
prepped_frame_lock = mp.Lock()
|
||||
# array for prepped frame box [x1, y1, x2, y2]
|
||||
prepped_frame_box = mp.Array(ctypes.c_uint16, 4)
|
||||
|
||||
# shape current frame so it can be treated as an image
|
||||
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
@ -95,20 +105,19 @@ def main():
|
||||
capture_process.daemon = True
|
||||
|
||||
# for each region, start a separate process for motion detection and object detection
|
||||
detection_processes = []
|
||||
detection_prep_processes = []
|
||||
motion_processes = []
|
||||
for region in regions:
|
||||
detection_process = mp.Process(target=detect_objects, args=(shared_arr,
|
||||
object_queue,
|
||||
detection_prep_process = mp.Process(target=prep_for_detection, args=(shared_arr,
|
||||
shared_frame_time,
|
||||
frame_lock, frame_ready,
|
||||
region['motion_detected'],
|
||||
frame_shape,
|
||||
region['size'], region['x_offset'], region['y_offset'],
|
||||
region['min_person_area'],
|
||||
DEBUG))
|
||||
detection_process.daemon = True
|
||||
detection_processes.append(detection_process)
|
||||
prepped_frame_array, prepped_frame_time, prepped_frame_ready,
|
||||
prepped_frame_lock, prepped_frame_box))
|
||||
detection_prep_process.daemon = True
|
||||
detection_prep_processes.append(detection_prep_process)
|
||||
|
||||
motion_process = mp.Process(target=detect_motion, args=(shared_arr,
|
||||
shared_frame_time,
|
||||
@ -168,15 +177,16 @@ def main():
|
||||
print("capture_process pid ", capture_process.pid)
|
||||
|
||||
# start the object detection processes
|
||||
for detection_process in detection_processes:
|
||||
detection_process.start()
|
||||
print("detection_process pid ", detection_process.pid)
|
||||
for detection_prep_process in detection_prep_processes:
|
||||
detection_prep_process.start()
|
||||
print("detection_prep_process pid ", detection_prep_process.pid)
|
||||
|
||||
# start the motion detection processes
|
||||
# for motion_process in motion_processes:
|
||||
# motion_process.start()
|
||||
# print("motion_process pid ", motion_process.pid)
|
||||
|
||||
# TEMP: short circuit the motion detection
|
||||
for region in regions:
|
||||
region['motion_detected'].set()
|
||||
with motion_changed:
|
||||
@ -239,8 +249,8 @@ def main():
|
||||
app.run(host='0.0.0.0', debug=False)
|
||||
|
||||
capture_process.join()
|
||||
for detection_process in detection_processes:
|
||||
detection_process.join()
|
||||
for detection_prep_process in detection_prep_processes:
|
||||
detection_prep_process.join()
|
||||
for motion_process in motion_processes:
|
||||
motion_process.join()
|
||||
frame_tracker.join()
|
||||
|
@ -2,11 +2,8 @@ import datetime
|
||||
import cv2
|
||||
import numpy as np
|
||||
from edgetpu.detection.engine import DetectionEngine
|
||||
from PIL import Image
|
||||
from . util import tonumpyarray
|
||||
|
||||
# TODO: make dynamic?
|
||||
NUM_CLASSES = 90
|
||||
# Path to frozen detection graph. This is the actual model that is used for the object detection.
|
||||
PATH_TO_CKPT = '/frozen_inference_graph.pb'
|
||||
# List of the strings that is used to add correct label for each box.
|
||||
@ -22,43 +19,51 @@ def ReadLabelFile(file_path):
|
||||
ret[int(pair[0])] = pair[1].strip()
|
||||
return ret
|
||||
|
||||
# do the actual object detection
|
||||
def tf_detect_objects(cropped_frame, engine, labels, region_size, region_x_offset, region_y_offset, debug):
|
||||
# Resize to 300x300 if needed
|
||||
if cropped_frame.shape != (300, 300, 3):
|
||||
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
||||
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
|
||||
image_np_expanded = np.expand_dims(cropped_frame, axis=0)
|
||||
|
||||
# Actual detection.
|
||||
ans = engine.DetectWithInputTensor(image_np_expanded.flatten(), threshold=0.5, top_k=3)
|
||||
|
||||
# build an array of detected objects
|
||||
objects = []
|
||||
if ans:
|
||||
for obj in ans:
|
||||
box = obj.bounding_box.flatten().tolist()
|
||||
objects.append({
|
||||
'name': str(labels[obj.label_id]),
|
||||
'score': float(obj.score),
|
||||
'xmin': int((box[0] * region_size) + region_x_offset),
|
||||
'ymin': int((box[1] * region_size) + region_y_offset),
|
||||
'xmax': int((box[2] * region_size) + region_x_offset),
|
||||
'ymax': int((box[3] * region_size) + region_y_offset)
|
||||
})
|
||||
|
||||
return objects
|
||||
|
||||
def detect_objects(shared_arr, object_queue, shared_frame_time, frame_lock, frame_ready,
|
||||
motion_detected, frame_shape, region_size, region_x_offset, region_y_offset,
|
||||
min_person_area, debug):
|
||||
# shape shared input array into frame for processing
|
||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
|
||||
def detect_objects(prepped_frame_array, prepped_frame_time, prepped_frame_lock,
|
||||
prepped_frame_ready, prepped_frame_box, object_queue, debug):
|
||||
# Load the edgetpu engine and labels
|
||||
engine = DetectionEngine(PATH_TO_CKPT)
|
||||
labels = ReadLabelFile(PATH_TO_LABELS)
|
||||
|
||||
prepped_frame_time = 0.0
|
||||
while True:
|
||||
with prepped_frame_ready:
|
||||
prepped_frame_ready.wait()
|
||||
|
||||
# make a copy of the cropped frame
|
||||
with prepped_frame_lock:
|
||||
prepped_frame_copy = prepped_frame_array.copy()
|
||||
prepped_frame_time = prepped_frame_time.value
|
||||
region_box = prepped_frame_box.value
|
||||
|
||||
# Actual detection.
|
||||
ans = engine.DetectWithInputTensor(prepped_frame_copy, threshold=0.5, top_k=3)
|
||||
|
||||
# put detected objects in the queue
|
||||
if ans:
|
||||
# assumes square
|
||||
region_size = region_box[3]-region_box[0]
|
||||
for obj in ans:
|
||||
box = obj.bounding_box.flatten().tolist()
|
||||
object_queue.append({
|
||||
'frame_time': prepped_frame_time,
|
||||
'name': str(labels[obj.label_id]),
|
||||
'score': float(obj.score),
|
||||
'xmin': int((box[0] * region_size) + region_box[0]),
|
||||
'ymin': int((box[1] * region_size) + region_box[1]),
|
||||
'xmax': int((box[2] * region_size) + region_box[0]),
|
||||
'ymax': int((box[3] * region_size) + region_box[1])
|
||||
})
|
||||
|
||||
def prep_for_detection(shared_whole_frame_array, shared_frame_time, frame_lock, frame_ready,
|
||||
motion_detected, frame_shape, region_size, region_x_offset, region_y_offset,
|
||||
prepped_frame_array, prepped_frame_time, prepped_frame_ready, prepped_frame_lock,
|
||||
prepped_frame_box):
|
||||
# shape shared input array into frame for processing
|
||||
shared_whole_frame = tonumpyarray(shared_whole_frame_array).reshape(frame_shape)
|
||||
|
||||
shared_prepped_frame = tonumpyarray(prepped_frame_array).reshape((1,300,300,3))
|
||||
|
||||
frame_time = 0.0
|
||||
while True:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
@ -69,20 +74,30 @@ def detect_objects(shared_arr, object_queue, shared_frame_time, frame_lock, fram
|
||||
with frame_ready:
|
||||
# if there isnt a frame ready for processing or it is old, wait for a new frame
|
||||
if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
|
||||
print("waiting...")
|
||||
frame_ready.wait()
|
||||
|
||||
# make a copy of the cropped frame
|
||||
with frame_lock:
|
||||
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
||||
cropped_frame = shared_whole_frame[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
||||
frame_time = shared_frame_time.value
|
||||
|
||||
print("grabbed frame " + str(frame_time))
|
||||
|
||||
# convert to RGB
|
||||
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
||||
# do the object detection
|
||||
objects = tf_detect_objects(cropped_frame_rgb, engine, labels, region_size, region_x_offset, region_y_offset, debug)
|
||||
for obj in objects:
|
||||
# ignore persons below the size threshold
|
||||
if obj['name'] == 'person' and (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin']) < min_person_area:
|
||||
continue
|
||||
obj['frame_time'] = frame_time
|
||||
object_queue.put(obj)
|
||||
# Resize to 300x300 if needed
|
||||
if cropped_frame_rgb.shape != (300, 300, 3):
|
||||
cropped_frame_rgb = cv2.resize(cropped_frame_rgb, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
||||
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
||||
frame_expanded = np.expand_dims(cropped_frame_rgb, axis=0)
|
||||
|
||||
# copy the prepped frame to the shared output array
|
||||
with prepped_frame_lock:
|
||||
shared_prepped_frame[:] = frame_expanded
|
||||
prepped_frame_time = frame_time
|
||||
prepped_frame_box[:] = [region_x_offset, region_y_offset, region_x_offset+region_size, region_y_offset+region_size]
|
||||
|
||||
# signal that a prepped frame is ready
|
||||
with prepped_frame_ready:
|
||||
prepped_frame_ready.notify_all()
|
Loading…
Reference in New Issue
Block a user