mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
merged shared memory objects and regions and set color of bounding box based on motion
This commit is contained in:
parent
30c223711d
commit
f3376a83d6
@ -157,22 +157,7 @@ def main():
|
||||
'size': int(region_parts[0]),
|
||||
'x_offset': int(region_parts[1]),
|
||||
'y_offset': int(region_parts[2]),
|
||||
'min_object_size': int(region_parts[3])
|
||||
})
|
||||
# capture a single frame and check the frame shape so the correct array
|
||||
# size can be allocated in memory
|
||||
video = cv2.VideoCapture(RTSP_URL)
|
||||
ret, frame = video.read()
|
||||
if ret:
|
||||
frame_shape = frame.shape
|
||||
else:
|
||||
print("Unable to capture video stream")
|
||||
exit(1)
|
||||
video.release()
|
||||
|
||||
shared_memory_objects = []
|
||||
for region in regions:
|
||||
shared_memory_objects.append({
|
||||
'min_object_size': int(region_parts[3]),
|
||||
# shared value for signaling to the capture process that we are ready for the next frame
|
||||
# (1 for ready 0 for not ready)
|
||||
'ready_for_frame': mp.Value('i', 1),
|
||||
@ -184,6 +169,16 @@ def main():
|
||||
# memory. probably something to do with the size of the memory block
|
||||
'output_array': mp.Array(ctypes.c_double, 6*10)
|
||||
})
|
||||
# capture a single frame and check the frame shape so the correct array
|
||||
# size can be allocated in memory
|
||||
video = cv2.VideoCapture(RTSP_URL)
|
||||
ret, frame = video.read()
|
||||
if ret:
|
||||
frame_shape = frame.shape
|
||||
else:
|
||||
print("Unable to capture video stream")
|
||||
exit(1)
|
||||
video.release()
|
||||
|
||||
# compute the flattened array length from the array shape
|
||||
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
||||
@ -194,15 +189,16 @@ def main():
|
||||
# shape current frame so it can be treated as an image
|
||||
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
|
||||
capture_process = mp.Process(target=fetch_frames, args=(shared_arr, shared_frame_time, [obj['ready_for_frame'] for obj in shared_memory_objects], frame_shape))
|
||||
capture_process = mp.Process(target=fetch_frames, args=(shared_arr,
|
||||
shared_frame_time, [region['ready_for_frame'] for region in regions], frame_shape))
|
||||
capture_process.daemon = True
|
||||
|
||||
detection_processes = []
|
||||
for index, region in enumerate(regions):
|
||||
detection_process = mp.Process(target=process_frames, args=(shared_arr,
|
||||
shared_memory_objects[index]['output_array'],
|
||||
region['output_array'],
|
||||
shared_frame_time,
|
||||
shared_memory_objects[index]['motion_detected'],
|
||||
region['motion_detected'],
|
||||
frame_shape,
|
||||
region['size'], region['x_offset'], region['y_offset']))
|
||||
detection_process.daemon = True
|
||||
@ -212,20 +208,20 @@ def main():
|
||||
for index, region in enumerate(regions):
|
||||
motion_process = mp.Process(target=detect_motion, args=(shared_arr,
|
||||
shared_frame_time,
|
||||
shared_memory_objects[index]['ready_for_frame'],
|
||||
shared_memory_objects[index]['motion_detected'],
|
||||
region['ready_for_frame'],
|
||||
region['motion_detected'],
|
||||
frame_shape,
|
||||
region['size'], region['x_offset'], region['y_offset'],
|
||||
region['min_object_size']))
|
||||
motion_process.daemon = True
|
||||
motion_processes.append(motion_process)
|
||||
|
||||
object_parser = ObjectParser([obj['output_array'] for obj in shared_memory_objects])
|
||||
object_parser = ObjectParser([region['output_array'] for region in regions])
|
||||
object_parser.start()
|
||||
|
||||
mqtt_publisher = MqttPublisher(MQTT_HOST, MQTT_MOTION_TOPIC, MQTT_OBJECT_TOPIC,
|
||||
MQTT_OBJECT_CLASSES.split(','),
|
||||
[obj['motion_detected'] for obj in shared_memory_objects])
|
||||
[region['motion_detected'] for region in regions])
|
||||
mqtt_publisher.start()
|
||||
|
||||
capture_process.start()
|
||||
@ -268,15 +264,15 @@ def main():
|
||||
use_normalized_coordinates=False)
|
||||
|
||||
for region in regions:
|
||||
color = (255,255,255)
|
||||
if region['motion_detected'].value == 1:
|
||||
color = (0,255,0)
|
||||
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
||||
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
||||
(255,255,255), 2)
|
||||
color, 2)
|
||||
|
||||
motion_status = 'No Motion'
|
||||
if any(obj['motion_detected'].value == 1 for obj in shared_memory_objects):
|
||||
motion_status = 'Motion'
|
||||
cv2.putText(frame, motion_status, (10, 20),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
|
||||
cv2.putText(frame, datetime.datetime.now().strftime("%H:%M:%S"), (1125, 20),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
|
||||
# convert back to BGR
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
||||
# encode the image into a jpg
|
||||
|
Loading…
Reference in New Issue
Block a user