diff --git a/frigate/test/__init__.py b/frigate/test/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/frigate/test/test_false_positives.py b/frigate/test/test_false_positives.py deleted file mode 100644 index afba06fa2..000000000 --- a/frigate/test/test_false_positives.py +++ /dev/null @@ -1,71 +0,0 @@ -import datetime -from unittest import TestCase, main -from frigate.video import process_frames, start_or_restart_ffmpeg, capture_frames -from frigate.util import DictFrameManager, EventsPerSecond, draw_box_with_label -from frigate.motion import MotionDetector -from frigate.edgetpu import LocalObjectDetector -from frigate.objects import ObjectTracker -import multiprocessing as mp -import numpy as np -import cv2 -from frigate.object_processing import COLOR_MAP - -class FalsePositiveTests(TestCase): - - def test_back_1594395958_675351_0(self): - ### load in frames - frame_shape = (1080,1920,3) - frame_manager = DictFrameManager() - frame_queue = mp.Queue() - fps = EventsPerSecond() - skipped_fps = EventsPerSecond() - stop_event = mp.Event() - detection_frame = mp.Value('d', datetime.datetime.now().timestamp()+100000) - ffmpeg_cmd = "ffmpeg -hide_banner -loglevel panic -i /debug/false_positives/back-1595647759.228381-0.mp4 -f rawvideo -pix_fmt rgb24 pipe:".split(" ") - ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_shape[0]*frame_shape[1]*frame_shape[2]) - capture_frames(ffmpeg_process, "back", frame_shape, frame_manager, frame_queue, 1, fps, skipped_fps, stop_event, detection_frame) - ffmpeg_process.wait() - ffmpeg_process.communicate() - assert(frame_queue.qsize() > 0) - - ### process frames - mask = np.zeros((frame_shape[0], frame_shape[1], 1), np.uint8) - mask[:] = 255 - motion_detector = MotionDetector(frame_shape, mask) - - object_detector = LocalObjectDetector(labels='/labelmap.txt') - object_tracker = ObjectTracker(10) - detected_objects_queue = mp.Queue() - process_fps = EventsPerSecond() - current_frame = mp.Value('d', 0.0) - - process_frames("back", frame_queue, frame_shape, frame_manager, motion_detector, object_detector, object_tracker, detected_objects_queue, - process_fps, current_frame, ['person'], {}, mask, stop_event, exit_on_empty=True) - assert(detected_objects_queue.qsize() > 0) - - ### check result - while(not detected_objects_queue.empty()): - camera_name, frame_time, current_tracked_objects = detected_objects_queue.get() - - current_frame = frame_manager.get(f"{camera_name}{frame_time}") - # draw the bounding boxes on the frame - for obj in current_tracked_objects.values(): - thickness = 2 - color = COLOR_MAP[obj['label']] - - if obj['frame_time'] != frame_time: - thickness = 1 - color = (255,0,0) - - # draw the bounding boxes on the frame - box = obj['box'] - draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color) - # draw the regions on the frame - region = obj['region'] - draw_box_with_label(current_frame, region[0], region[1], region[2], region[3], 'region', f"{region[2]-region[0]}", thickness=1, color=(0,255,0)) - - cv2.imwrite(f"/debug/frames/{int(frame_time*1000000)}.jpg", cv2.cvtColor(current_frame, cv2.COLOR_RGB2BGR)) - - -if __name__ == '__main__': - main() \ No newline at end of file