mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-09-14 17:52:10 +02:00
Use CUDA graphs for object detection on Nvidia GPUs (#20027)
* Use CUDA graphs to improve efficiency of object detection * Cleanup comments and typing
This commit is contained in:
parent
15729e0f19
commit
fad28a764c
@ -1,6 +1,7 @@
|
||||
import logging
|
||||
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
from pydantic import Field
|
||||
from typing_extensions import Literal
|
||||
|
||||
@ -22,6 +23,53 @@ logger = logging.getLogger(__name__)
|
||||
DETECTOR_KEY = "onnx"
|
||||
|
||||
|
||||
class CudaGraphRunner:
|
||||
"""Encapsulates CUDA Graph capture and replay using ONNX Runtime IOBinding.
|
||||
|
||||
This runner assumes a single tensor input and binds all model outputs.
|
||||
"""
|
||||
|
||||
def __init__(self, session: ort.InferenceSession, cuda_device_id: int):
|
||||
self._session = session
|
||||
self._cuda_device_id = cuda_device_id
|
||||
self._captured = False
|
||||
self._io_binding: ort.IOBinding | None = None
|
||||
self._input_name: str | None = None
|
||||
self._output_names: list[str] | None = None
|
||||
self._input_ortvalue: ort.OrtValue | None = None
|
||||
self._output_ortvalues: ort.OrtValue | None = None
|
||||
|
||||
def run(self, input_name: str, tensor_input: np.ndarray):
|
||||
tensor_input = np.ascontiguousarray(tensor_input)
|
||||
|
||||
if not self._captured:
|
||||
# Prepare IOBinding with CUDA buffers and let ORT allocate outputs on device
|
||||
self._io_binding = self._session.io_binding()
|
||||
self._input_name = input_name
|
||||
self._output_names = [o.name for o in self._session.get_outputs()]
|
||||
|
||||
self._input_ortvalue = ort.OrtValue.ortvalue_from_numpy(
|
||||
tensor_input, "cuda", self._cuda_device_id
|
||||
)
|
||||
self._io_binding.bind_ortvalue_input(self._input_name, self._input_ortvalue)
|
||||
|
||||
for name in self._output_names:
|
||||
# Bind outputs to CUDA and allow ORT to allocate appropriately
|
||||
self._io_binding.bind_output(name, "cuda", self._cuda_device_id)
|
||||
|
||||
# First IOBinding run to allocate, execute, and capture CUDA Graph
|
||||
ro = ort.RunOptions()
|
||||
self._session.run_with_iobinding(self._io_binding, ro)
|
||||
self._captured = True
|
||||
return self._io_binding.copy_outputs_to_cpu()
|
||||
|
||||
# Replay using updated input, copy results to CPU
|
||||
self._input_ortvalue.update_inplace(tensor_input)
|
||||
ro = ort.RunOptions()
|
||||
self._session.run_with_iobinding(self._io_binding, ro)
|
||||
return self._io_binding.copy_outputs_to_cpu()
|
||||
|
||||
|
||||
class ONNXDetectorConfig(BaseDetectorConfig):
|
||||
type: Literal[DETECTOR_KEY]
|
||||
device: str = Field(default="AUTO", title="Device Type")
|
||||
@ -33,16 +81,6 @@ class ONNXDetector(DetectionApi):
|
||||
def __init__(self, detector_config: ONNXDetectorConfig):
|
||||
super().__init__(detector_config)
|
||||
|
||||
try:
|
||||
import onnxruntime as ort
|
||||
|
||||
logger.info("ONNX: loaded onnxruntime module")
|
||||
except ModuleNotFoundError:
|
||||
logger.error(
|
||||
"ONNX: module loading failed, need 'pip install onnxruntime'?!?"
|
||||
)
|
||||
raise
|
||||
|
||||
path = detector_config.model.path
|
||||
logger.info(f"ONNX: loading {detector_config.model.path}")
|
||||
|
||||
@ -50,6 +88,15 @@ class ONNXDetector(DetectionApi):
|
||||
detector_config.device == "CPU", detector_config.device
|
||||
)
|
||||
|
||||
# Enable CUDA Graphs only for supported models when using CUDA EP
|
||||
if "CUDAExecutionProvider" in providers:
|
||||
cuda_idx = providers.index("CUDAExecutionProvider")
|
||||
# mutate only this call's provider options
|
||||
options[cuda_idx] = {
|
||||
**options[cuda_idx],
|
||||
"enable_cuda_graph": True,
|
||||
}
|
||||
|
||||
self.model = ort.InferenceSession(
|
||||
path, providers=providers, provider_options=options
|
||||
)
|
||||
@ -62,6 +109,19 @@ class ONNXDetector(DetectionApi):
|
||||
if self.onnx_model_type == ModelTypeEnum.yolox:
|
||||
self.calculate_grids_strides()
|
||||
|
||||
self._cuda_device_id = 0
|
||||
self._cg_runner: CudaGraphRunner | None = None
|
||||
|
||||
try:
|
||||
if "CUDAExecutionProvider" in providers:
|
||||
cuda_idx = providers.index("CUDAExecutionProvider")
|
||||
self._cuda_device_id = options[cuda_idx].get("device_id", 0)
|
||||
|
||||
if options[cuda_idx].get("enable_cuda_graph"):
|
||||
self._cg_runner = CudaGraphRunner(self.model, self._cuda_device_id)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
logger.info(f"ONNX: {path} loaded")
|
||||
|
||||
def detect_raw(self, tensor_input: np.ndarray):
|
||||
@ -78,7 +138,17 @@ class ONNXDetector(DetectionApi):
|
||||
return post_process_dfine(tensor_output, self.width, self.height)
|
||||
|
||||
model_input_name = self.model.get_inputs()[0].name
|
||||
tensor_output = self.model.run(None, {model_input_name: tensor_input})
|
||||
|
||||
if self._cg_runner is not None:
|
||||
try:
|
||||
# Run using CUDA graphs if available
|
||||
tensor_output = self._cg_runner.run(model_input_name, tensor_input)
|
||||
except Exception:
|
||||
logger.warning("CUDA Graphs failed, falling back to regular run")
|
||||
self._cg_runner = None
|
||||
else:
|
||||
# Use regular run if CUDA graphs are not available
|
||||
tensor_output = self.model.run(None, {model_input_name: tensor_input})
|
||||
|
||||
if self.onnx_model_type == ModelTypeEnum.rfdetr:
|
||||
return post_process_rfdetr(tensor_output)
|
||||
|
Loading…
Reference in New Issue
Block a user