mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
move zone config under each camera
This commit is contained in:
parent
005e188d38
commit
fdc8bbf72d
@ -76,39 +76,6 @@ objects:
|
||||
min_score: 0.5
|
||||
threshold: 0.85
|
||||
|
||||
zones:
|
||||
#################
|
||||
# Name of the zone
|
||||
################
|
||||
front_steps:
|
||||
front_door:
|
||||
####################
|
||||
# For each camera, a list of x,y coordinates to define the polygon of the zone. The top
|
||||
# left corner is 0,0. Can also be a comma separated string of all x,y coordinates combined.
|
||||
# The same zone can exist across multiple cameras if they have overlapping FOVs.
|
||||
# An object is determined to be in the zone based on whether or not the bottom center
|
||||
# of it's bounding box is within the polygon. The polygon must have at least 3 points.
|
||||
# Coordinates can be generated at https://www.image-map.net/
|
||||
####################
|
||||
coordinates:
|
||||
- 545,1077
|
||||
- 747,939
|
||||
- 788,805
|
||||
################
|
||||
# Zone level object filters. These are applied in addition to the global and camera filters
|
||||
# and should be more restrictive than the global and camera filters. The global and camera
|
||||
# filters are applied upstream.
|
||||
################
|
||||
filters:
|
||||
person:
|
||||
min_area: 5000
|
||||
max_area: 100000
|
||||
threshold: 0.8
|
||||
driveway:
|
||||
front_door:
|
||||
coordinates: 545,1077,747,939,788,805
|
||||
yard:
|
||||
|
||||
cameras:
|
||||
back:
|
||||
ffmpeg:
|
||||
@ -169,6 +136,37 @@ cameras:
|
||||
# crop_to_region: True
|
||||
# snapshot_height: 300
|
||||
|
||||
################
|
||||
# Zones
|
||||
################
|
||||
zones:
|
||||
#################
|
||||
# Name of the zone
|
||||
################
|
||||
front_steps:
|
||||
####################
|
||||
# A list of x,y coordinates to define the polygon of the zone. The top
|
||||
# left corner is 0,0. Can also be a comma separated string of all x,y coordinates combined.
|
||||
# The same zone name can exist across multiple cameras if they have overlapping FOVs.
|
||||
# An object is determined to be in the zone based on whether or not the bottom center
|
||||
# of it's bounding box is within the polygon. The polygon must have at least 3 points.
|
||||
# Coordinates can be generated at https://www.image-map.net/
|
||||
####################
|
||||
coordinates:
|
||||
- 545,1077
|
||||
- 747,939
|
||||
- 788,805
|
||||
################
|
||||
# Zone level object filters. These are applied in addition to the global and camera filters
|
||||
# and should be more restrictive than the global and camera filters. The global and camera
|
||||
# filters are applied upstream.
|
||||
################
|
||||
filters:
|
||||
person:
|
||||
min_area: 5000
|
||||
max_area: 100000
|
||||
threshold: 0.8
|
||||
|
||||
################
|
||||
# This will save a clip for each tracked object by frigate along with a json file that contains
|
||||
# data related to the tracked object. This works by telling ffmpeg to write video segments to /cache
|
||||
|
@ -182,7 +182,7 @@ def main():
|
||||
'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True),
|
||||
'draw_zones': config.get('snapshots', {}).get('draw_zones', False)
|
||||
}
|
||||
config['zones'] = {}
|
||||
config['zones'] = config.get('zones', {})
|
||||
|
||||
# Queue for cameras to push tracked objects to
|
||||
tracked_objects_queue = mp.Queue()
|
||||
@ -293,7 +293,7 @@ def main():
|
||||
event_processor = EventProcessor(CONFIG['cameras'], camera_processes, '/cache', '/clips', event_queue, stop_event)
|
||||
event_processor.start()
|
||||
|
||||
object_processor = TrackedObjectProcessor(CONFIG['cameras'], CONFIG.get('zones', {}), client, MQTT_TOPIC_PREFIX, tracked_objects_queue, event_queue, stop_event)
|
||||
object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue, event_queue, stop_event)
|
||||
object_processor.start()
|
||||
|
||||
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, plasma_process, stop_event)
|
||||
|
@ -230,10 +230,9 @@ class CameraState():
|
||||
|
||||
|
||||
class TrackedObjectProcessor(threading.Thread):
|
||||
def __init__(self, camera_config, zone_config, client, topic_prefix, tracked_objects_queue, event_queue, stop_event):
|
||||
def __init__(self, camera_config, client, topic_prefix, tracked_objects_queue, event_queue, stop_event):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera_config = camera_config
|
||||
self.zone_config = zone_config
|
||||
self.client = client
|
||||
self.topic_prefix = topic_prefix
|
||||
self.tracked_objects_queue = tracked_objects_queue
|
||||
@ -299,25 +298,24 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
self.zone_data = defaultdict(lambda: defaultdict(lambda: set()))
|
||||
|
||||
# set colors for zones
|
||||
all_zone_names = set([zone for config in self.camera_config.values() for zone in config['zones'].keys()])
|
||||
zone_colors = {}
|
||||
colors = plt.cm.get_cmap('tab10', len(self.zone_config.keys()))
|
||||
for i, zone in enumerate(self.zone_config.keys()):
|
||||
colors = plt.cm.get_cmap('tab10', len(all_zone_names))
|
||||
for i, zone in enumerate(all_zone_names):
|
||||
zone_colors[zone] = tuple(int(round(255 * c)) for c in colors(i)[:3])
|
||||
|
||||
# create zone contours
|
||||
for zone_name, config in zone_config.items():
|
||||
for camera, camera_zone_config in config.items():
|
||||
camera_zone = {}
|
||||
camera_zone['color'] = zone_colors[zone_name]
|
||||
coordinates = camera_zone_config['coordinates']
|
||||
for camera_config in self.camera_config.values():
|
||||
for zone_name, zone_config in camera_config['zones'].items():
|
||||
zone_config['color'] = zone_colors[zone_name]
|
||||
coordinates = zone_config['coordinates']
|
||||
if isinstance(coordinates, list):
|
||||
camera_zone['contour'] = np.array([[int(p.split(',')[0]), int(p.split(',')[1])] for p in coordinates])
|
||||
zone_config['contour'] = np.array([[int(p.split(',')[0]), int(p.split(',')[1])] for p in coordinates])
|
||||
elif isinstance(coordinates, str):
|
||||
points = coordinates.split(',')
|
||||
camera_zone['contour'] = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
|
||||
zone_config['contour'] = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
|
||||
else:
|
||||
print(f"Unable to parse zone coordinates for {zone_name} - {camera}")
|
||||
self.camera_config[camera]['zones'][zone_name] = camera_zone
|
||||
|
||||
def get_best(self, camera, label):
|
||||
best_objects = self.camera_states[camera].best_objects
|
||||
|
Loading…
Reference in New Issue
Block a user