import datetime import logging import math import multiprocessing as mp import os import queue import signal import subprocess as sp import threading import time from collections import defaultdict import cv2 import numpy as np from setproctitle import setproctitle from frigate.config import CameraConfig, DetectConfig, ModelConfig from frigate.const import ALL_ATTRIBUTE_LABELS, ATTRIBUTE_LABEL_MAP, CACHE_DIR from frigate.detectors.detector_config import PixelFormatEnum from frigate.log import LogPipe from frigate.motion import MotionDetector from frigate.motion.improved_motion import ImprovedMotionDetector from frigate.object_detection import RemoteObjectDetector from frigate.ptz.autotrack import ptz_moving_at_frame_time from frigate.track import ObjectTracker from frigate.track.norfair_tracker import NorfairTracker from frigate.types import PTZMetricsTypes from frigate.util.builtin import EventsPerSecond from frigate.util.image import ( FrameManager, SharedMemoryFrameManager, area, calculate_region, draw_box_with_label, intersection, intersection_over_union, yuv_region_2_bgr, yuv_region_2_rgb, yuv_region_2_yuv, ) from frigate.util.services import listen logger = logging.getLogger(__name__) def filtered(obj, objects_to_track, object_filters): object_name = obj[0] object_score = obj[1] object_box = obj[2] object_area = obj[3] object_ratio = obj[4] if object_name not in objects_to_track: return True if object_name in object_filters: obj_settings = object_filters[object_name] # if the min area is larger than the # detected object, don't add it to detected objects if obj_settings.min_area > object_area: return True # if the detected object is larger than the # max area, don't add it to detected objects if obj_settings.max_area < object_area: return True # if the score is lower than the min_score, skip if obj_settings.min_score > object_score: return True # if the object is not proportionally wide enough if obj_settings.min_ratio > object_ratio: return True # if the object is proportionally too wide if obj_settings.max_ratio < object_ratio: return True if obj_settings.mask is not None: # compute the coordinates of the object and make sure # the location isn't outside the bounds of the image (can happen from rounding) object_xmin = object_box[0] object_xmax = object_box[2] object_ymax = object_box[3] y_location = min(int(object_ymax), len(obj_settings.mask) - 1) x_location = min( int((object_xmax + object_xmin) / 2.0), len(obj_settings.mask[0]) - 1, ) # if the object is in a masked location, don't add it to detected objects if obj_settings.mask[y_location][x_location] == 0: return True return False def get_min_region_size(model_config: ModelConfig) -> int: """Get the min region size.""" return max(model_config.height, model_config.width) def create_tensor_input(frame, model_config: ModelConfig, region): if model_config.input_pixel_format == PixelFormatEnum.rgb: cropped_frame = yuv_region_2_rgb(frame, region) elif model_config.input_pixel_format == PixelFormatEnum.bgr: cropped_frame = yuv_region_2_bgr(frame, region) else: cropped_frame = yuv_region_2_yuv(frame, region) # Resize if needed if cropped_frame.shape != (model_config.height, model_config.width, 3): cropped_frame = cv2.resize( cropped_frame, dsize=(model_config.width, model_config.height), interpolation=cv2.INTER_LINEAR, ) # Expand dimensions since the model expects images to have shape: [1, height, width, 3] return np.expand_dims(cropped_frame, axis=0) def stop_ffmpeg(ffmpeg_process, logger): logger.info("Terminating the existing ffmpeg process...") ffmpeg_process.terminate() try: logger.info("Waiting for ffmpeg to exit gracefully...") ffmpeg_process.communicate(timeout=30) except sp.TimeoutExpired: logger.info("FFmpeg didnt exit. Force killing...") ffmpeg_process.kill() ffmpeg_process.communicate() ffmpeg_process = None def start_or_restart_ffmpeg( ffmpeg_cmd, logger, logpipe: LogPipe, frame_size=None, ffmpeg_process=None ): if ffmpeg_process is not None: stop_ffmpeg(ffmpeg_process, logger) if frame_size is None: process = sp.Popen( ffmpeg_cmd, stdout=sp.DEVNULL, stderr=logpipe, stdin=sp.DEVNULL, start_new_session=True, ) else: process = sp.Popen( ffmpeg_cmd, stdout=sp.PIPE, stderr=logpipe, stdin=sp.DEVNULL, bufsize=frame_size * 10, start_new_session=True, ) return process def capture_frames( ffmpeg_process, camera_name, frame_shape, frame_manager: FrameManager, frame_queue, fps: mp.Value, skipped_fps: mp.Value, current_frame: mp.Value, stop_event: mp.Event, ): frame_size = frame_shape[0] * frame_shape[1] frame_rate = EventsPerSecond() frame_rate.start() skipped_eps = EventsPerSecond() skipped_eps.start() while True: fps.value = frame_rate.eps() skipped_fps.value = skipped_eps.eps() current_frame.value = datetime.datetime.now().timestamp() frame_name = f"{camera_name}{current_frame.value}" frame_buffer = frame_manager.create(frame_name, frame_size) try: frame_buffer[:] = ffmpeg_process.stdout.read(frame_size) except Exception: # shutdown has been initiated if stop_event.is_set(): break logger.error(f"{camera_name}: Unable to read frames from ffmpeg process.") if ffmpeg_process.poll() is not None: logger.error( f"{camera_name}: ffmpeg process is not running. exiting capture thread..." ) frame_manager.delete(frame_name) break continue frame_rate.update() # don't lock the queue to check, just try since it should rarely be full try: # add to the queue frame_queue.put(current_frame.value, False) # close the frame frame_manager.close(frame_name) except queue.Full: # if the queue is full, skip this frame skipped_eps.update() frame_manager.delete(frame_name) class CameraWatchdog(threading.Thread): def __init__( self, camera_name, config: CameraConfig, frame_queue, camera_fps, skipped_fps, ffmpeg_pid, stop_event, ): threading.Thread.__init__(self) self.logger = logging.getLogger(f"watchdog.{camera_name}") self.camera_name = camera_name self.config = config self.capture_thread = None self.ffmpeg_detect_process = None self.logpipe = LogPipe(f"ffmpeg.{self.camera_name}.detect") self.ffmpeg_other_processes: list[dict[str, any]] = [] self.camera_fps = camera_fps self.skipped_fps = skipped_fps self.ffmpeg_pid = ffmpeg_pid self.frame_queue = frame_queue self.frame_shape = self.config.frame_shape_yuv self.frame_size = self.frame_shape[0] * self.frame_shape[1] self.stop_event = stop_event self.sleeptime = self.config.ffmpeg.retry_interval def run(self): self.start_ffmpeg_detect() for c in self.config.ffmpeg_cmds: if "detect" in c["roles"]: continue logpipe = LogPipe( f"ffmpeg.{self.camera_name}.{'_'.join(sorted(c['roles']))}" ) self.ffmpeg_other_processes.append( { "cmd": c["cmd"], "roles": c["roles"], "logpipe": logpipe, "process": start_or_restart_ffmpeg(c["cmd"], self.logger, logpipe), } ) time.sleep(self.sleeptime) while not self.stop_event.wait(self.sleeptime): now = datetime.datetime.now().timestamp() if not self.capture_thread.is_alive(): self.camera_fps.value = 0 self.logger.error( f"Ffmpeg process crashed unexpectedly for {self.camera_name}." ) self.logger.error( "The following ffmpeg logs include the last 100 lines prior to exit." ) self.logpipe.dump() self.start_ffmpeg_detect() elif now - self.capture_thread.current_frame.value > 20: self.camera_fps.value = 0 self.logger.info( f"No frames received from {self.camera_name} in 20 seconds. Exiting ffmpeg..." ) self.ffmpeg_detect_process.terminate() try: self.logger.info("Waiting for ffmpeg to exit gracefully...") self.ffmpeg_detect_process.communicate(timeout=30) except sp.TimeoutExpired: self.logger.info("FFmpeg did not exit. Force killing...") self.ffmpeg_detect_process.kill() self.ffmpeg_detect_process.communicate() elif self.camera_fps.value >= (self.config.detect.fps + 10): self.camera_fps.value = 0 self.logger.info( f"{self.camera_name} exceeded fps limit. Exiting ffmpeg..." ) self.ffmpeg_detect_process.terminate() try: self.logger.info("Waiting for ffmpeg to exit gracefully...") self.ffmpeg_detect_process.communicate(timeout=30) except sp.TimeoutExpired: self.logger.info("FFmpeg did not exit. Force killing...") self.ffmpeg_detect_process.kill() self.ffmpeg_detect_process.communicate() for p in self.ffmpeg_other_processes: poll = p["process"].poll() if self.config.record.enabled and "record" in p["roles"]: latest_segment_time = self.get_latest_segment_timestamp( p.get( "latest_segment_time", datetime.datetime.now().timestamp() ) ) if datetime.datetime.now().timestamp() > ( latest_segment_time + 120 ): self.logger.error( f"No new recording segments were created for {self.camera_name} in the last 120s. restarting the ffmpeg record process..." ) p["process"] = start_or_restart_ffmpeg( p["cmd"], self.logger, p["logpipe"], ffmpeg_process=p["process"], ) continue else: p["latest_segment_time"] = latest_segment_time if poll is None: continue p["logpipe"].dump() p["process"] = start_or_restart_ffmpeg( p["cmd"], self.logger, p["logpipe"], ffmpeg_process=p["process"] ) stop_ffmpeg(self.ffmpeg_detect_process, self.logger) for p in self.ffmpeg_other_processes: stop_ffmpeg(p["process"], self.logger) p["logpipe"].close() self.logpipe.close() def start_ffmpeg_detect(self): ffmpeg_cmd = [ c["cmd"] for c in self.config.ffmpeg_cmds if "detect" in c["roles"] ][0] self.ffmpeg_detect_process = start_or_restart_ffmpeg( ffmpeg_cmd, self.logger, self.logpipe, self.frame_size ) self.ffmpeg_pid.value = self.ffmpeg_detect_process.pid self.capture_thread = CameraCapture( self.camera_name, self.ffmpeg_detect_process, self.frame_shape, self.frame_queue, self.camera_fps, self.skipped_fps, self.stop_event, ) self.capture_thread.start() def get_latest_segment_timestamp(self, latest_timestamp) -> int: """Checks if ffmpeg is still writing recording segments to cache.""" cache_files = sorted( [ d for d in os.listdir(CACHE_DIR) if os.path.isfile(os.path.join(CACHE_DIR, d)) and d.endswith(".mp4") and not d.startswith("clip_") ] ) newest_segment_timestamp = latest_timestamp for file in cache_files: if self.camera_name in file: basename = os.path.splitext(file)[0] _, date = basename.rsplit("-", maxsplit=1) ts = datetime.datetime.strptime(date, "%Y%m%d%H%M%S").timestamp() if ts > newest_segment_timestamp: newest_segment_timestamp = ts return newest_segment_timestamp class CameraCapture(threading.Thread): def __init__( self, camera_name, ffmpeg_process, frame_shape, frame_queue, fps, skipped_fps, stop_event, ): threading.Thread.__init__(self) self.name = f"capture:{camera_name}" self.camera_name = camera_name self.frame_shape = frame_shape self.frame_queue = frame_queue self.fps = fps self.stop_event = stop_event self.skipped_fps = skipped_fps self.frame_manager = SharedMemoryFrameManager() self.ffmpeg_process = ffmpeg_process self.current_frame = mp.Value("d", 0.0) self.last_frame = 0 def run(self): capture_frames( self.ffmpeg_process, self.camera_name, self.frame_shape, self.frame_manager, self.frame_queue, self.fps, self.skipped_fps, self.current_frame, self.stop_event, ) def capture_camera(name, config: CameraConfig, process_info): stop_event = mp.Event() def receiveSignal(signalNumber, frame): stop_event.set() signal.signal(signal.SIGTERM, receiveSignal) signal.signal(signal.SIGINT, receiveSignal) threading.current_thread().name = f"capture:{name}" setproctitle(f"frigate.capture:{name}") frame_queue = process_info["frame_queue"] camera_watchdog = CameraWatchdog( name, config, frame_queue, process_info["camera_fps"], process_info["skipped_fps"], process_info["ffmpeg_pid"], stop_event, ) camera_watchdog.start() camera_watchdog.join() def track_camera( name, config: CameraConfig, model_config, labelmap, detection_queue, result_connection, detected_objects_queue, process_info, ptz_metrics, ): stop_event = mp.Event() def receiveSignal(signalNumber, frame): stop_event.set() signal.signal(signal.SIGTERM, receiveSignal) signal.signal(signal.SIGINT, receiveSignal) threading.current_thread().name = f"process:{name}" setproctitle(f"frigate.process:{name}") listen() frame_queue = process_info["frame_queue"] detection_enabled = process_info["detection_enabled"] motion_enabled = process_info["motion_enabled"] improve_contrast_enabled = process_info["improve_contrast_enabled"] motion_threshold = process_info["motion_threshold"] motion_contour_area = process_info["motion_contour_area"] frame_shape = config.frame_shape objects_to_track = config.objects.track object_filters = config.objects.filters motion_detector = ImprovedMotionDetector( frame_shape, config.motion, config.detect.fps, improve_contrast_enabled, motion_threshold, motion_contour_area, ) object_detector = RemoteObjectDetector( name, labelmap, detection_queue, result_connection, model_config, stop_event ) object_tracker = NorfairTracker(config, ptz_metrics) frame_manager = SharedMemoryFrameManager() process_frames( name, frame_queue, frame_shape, model_config, config.detect, frame_manager, motion_detector, object_detector, object_tracker, detected_objects_queue, process_info, objects_to_track, object_filters, detection_enabled, motion_enabled, stop_event, ptz_metrics, ) logger.info(f"{name}: exiting subprocess") def box_overlaps(b1, b2): if b1[2] < b2[0] or b1[0] > b2[2] or b1[1] > b2[3] or b1[3] < b2[1]: return False return True def box_inside(b1, b2): # check if b2 is inside b1 if b2[0] >= b1[0] and b2[1] >= b1[1] and b2[2] <= b1[2] and b2[3] <= b1[3]: return True return False def reduce_boxes(boxes, iou_threshold=0.0): clusters = [] for box in boxes: matched = 0 for cluster in clusters: if intersection_over_union(box, cluster) > iou_threshold: matched = 1 cluster[0] = min(cluster[0], box[0]) cluster[1] = min(cluster[1], box[1]) cluster[2] = max(cluster[2], box[2]) cluster[3] = max(cluster[3], box[3]) if not matched: clusters.append(list(box)) return [tuple(c) for c in clusters] def intersects_any(box_a, boxes): for box in boxes: if box_overlaps(box_a, box): return True return False def detect( detect_config: DetectConfig, object_detector, frame, model_config, region, objects_to_track, object_filters, ): tensor_input = create_tensor_input(frame, model_config, region) detections = [] region_detections = object_detector.detect(tensor_input) for d in region_detections: box = d[2] size = region[2] - region[0] x_min = int(max(0, (box[1] * size) + region[0])) y_min = int(max(0, (box[0] * size) + region[1])) x_max = int(min(detect_config.width - 1, (box[3] * size) + region[0])) y_max = int(min(detect_config.height - 1, (box[2] * size) + region[1])) # ignore objects that were detected outside the frame if (x_min >= detect_config.width - 1) or (y_min >= detect_config.height - 1): continue width = x_max - x_min height = y_max - y_min area = width * height ratio = width / max(1, height) det = ( d[0], d[1], (x_min, y_min, x_max, y_max), area, ratio, region, ) # apply object filters if filtered(det, objects_to_track, object_filters): continue detections.append(det) return detections def get_cluster_boundary(box, min_region): # compute the max region size for the current box (box is 10% of region) box_width = box[2] - box[0] box_height = box[3] - box[1] max_region_area = abs(box_width * box_height) / 0.1 max_region_size = max(min_region, int(math.sqrt(max_region_area))) centroid = (box_width / 2 + box[0], box_height / 2 + box[1]) max_x_dist = int(max_region_size - box_width / 2 * 1.1) max_y_dist = int(max_region_size - box_height / 2 * 1.1) return [ int(centroid[0] - max_x_dist), int(centroid[1] - max_y_dist), int(centroid[0] + max_x_dist), int(centroid[1] + max_y_dist), ] def get_cluster_candidates(frame_shape, min_region, boxes): # and create a cluster of other boxes using it's max region size # only include boxes where the region is an appropriate(except the region could possibly be smaller?) # size in the cluster. in order to be in the cluster, the furthest corner needs to be within x,y offset # determined by the max_region size minus half the box + 20% # TODO: see if we can do this with numpy cluster_candidates = [] used_boxes = [] # loop over each box for current_index, b in enumerate(boxes): if current_index in used_boxes: continue cluster = [current_index] used_boxes.append(current_index) cluster_boundary = get_cluster_boundary(b, min_region) # find all other boxes that fit inside the boundary for compare_index, compare_box in enumerate(boxes): if compare_index in used_boxes: continue # if the box is not inside the potential cluster area, cluster them if not box_inside(cluster_boundary, compare_box): continue # get the region if you were to add this box to the cluster potential_cluster = cluster + [compare_index] cluster_region = get_cluster_region( frame_shape, min_region, potential_cluster, boxes ) # if region could be smaller and either box would be too small # for the resulting region, dont cluster should_cluster = True if (cluster_region[2] - cluster_region[0]) > min_region: for b in potential_cluster: box = boxes[b] # boxes should be more than 5% of the area of the region if area(box) / area(cluster_region) < 0.05: should_cluster = False break if should_cluster: cluster.append(compare_index) used_boxes.append(compare_index) cluster_candidates.append(cluster) # return the unique clusters only unique = {tuple(sorted(c)) for c in cluster_candidates} return [list(tup) for tup in unique] def get_cluster_region(frame_shape, min_region, cluster, boxes): min_x = frame_shape[1] min_y = frame_shape[0] max_x = 0 max_y = 0 for b in cluster: min_x = min(boxes[b][0], min_x) min_y = min(boxes[b][1], min_y) max_x = max(boxes[b][2], max_x) max_y = max(boxes[b][3], max_y) return calculate_region( frame_shape, min_x, min_y, max_x, max_y, min_region, multiplier=1.2 ) def get_consolidated_object_detections(detected_object_groups): """Drop detections that overlap too much""" consolidated_detections = [] for group in detected_object_groups.values(): # if the group only has 1 item, skip if len(group) == 1: consolidated_detections.append(group[0]) continue # sort smallest to largest by area sorted_by_area = sorted(group, key=lambda g: g[3]) for current_detection_idx in range(0, len(sorted_by_area)): current_detection = sorted_by_area[current_detection_idx][2] overlap = 0 for to_check_idx in range( min(current_detection_idx + 1, len(sorted_by_area)), len(sorted_by_area), ): to_check = sorted_by_area[to_check_idx][2] intersect_box = intersection(current_detection, to_check) # if 90% of smaller detection is inside of another detection, consolidate if ( intersect_box is not None and area(intersect_box) / area(current_detection) > 0.9 ): overlap = 1 break if overlap == 0: consolidated_detections.append(sorted_by_area[current_detection_idx]) return consolidated_detections def process_frames( camera_name: str, frame_queue: mp.Queue, frame_shape, model_config: ModelConfig, detect_config: DetectConfig, frame_manager: FrameManager, motion_detector: MotionDetector, object_detector: RemoteObjectDetector, object_tracker: ObjectTracker, detected_objects_queue: mp.Queue, process_info: dict, objects_to_track: list[str], object_filters, detection_enabled: mp.Value, motion_enabled: mp.Value, stop_event, ptz_metrics: PTZMetricsTypes, exit_on_empty: bool = False, ): fps = process_info["process_fps"] detection_fps = process_info["detection_fps"] current_frame_time = process_info["detection_frame"] fps_tracker = EventsPerSecond() fps_tracker.start() startup_scan_counter = 0 region_min_size = get_min_region_size(model_config) while not stop_event.is_set(): try: if exit_on_empty: frame_time = frame_queue.get(False) else: frame_time = frame_queue.get(True, 1) except queue.Empty: if exit_on_empty: logger.info("Exiting track_objects...") break continue current_frame_time.value = frame_time frame = frame_manager.get( f"{camera_name}{frame_time}", (frame_shape[0] * 3 // 2, frame_shape[1]) ) if frame is None: logger.info(f"{camera_name}: frame {frame_time} is not in memory store.") continue # look for motion if enabled and ptz is not moving # ptz_moving_at_frame_time() always returns False for # non ptz/autotracking cameras motion_boxes = ( motion_detector.detect(frame) if motion_enabled.value and not ptz_moving_at_frame_time( frame_time, ptz_metrics["ptz_start_time"].value, ptz_metrics["ptz_stop_time"].value, ) else [] ) regions = [] consolidated_detections = [] # if detection is disabled if not detection_enabled.value: object_tracker.match_and_update(frame_time, []) else: # get stationary object ids # check every Nth frame for stationary objects # disappeared objects are not stationary # also check for overlapping motion boxes stationary_object_ids = [ obj["id"] for obj in object_tracker.tracked_objects.values() # if it has exceeded the stationary threshold if obj["motionless_count"] >= detect_config.stationary.threshold # and it isn't due for a periodic check and ( detect_config.stationary.interval == 0 or obj["motionless_count"] % detect_config.stationary.interval != 0 ) # and it hasn't disappeared and object_tracker.disappeared[obj["id"]] == 0 # and it doesn't overlap with any current motion boxes and not intersects_any(obj["box"], motion_boxes) ] # get tracked object boxes that aren't stationary tracked_object_boxes = [ obj["estimate"] for obj in object_tracker.tracked_objects.values() if obj["id"] not in stationary_object_ids ] combined_boxes = motion_boxes + tracked_object_boxes cluster_candidates = get_cluster_candidates( frame_shape, region_min_size, combined_boxes ) regions = [ get_cluster_region( frame_shape, region_min_size, candidate, combined_boxes ) for candidate in cluster_candidates ] # if starting up, get the next startup scan region if startup_scan_counter < 9: ymin = int(frame_shape[0] / 3 * startup_scan_counter / 3) ymax = int(frame_shape[0] / 3 + ymin) xmin = int(frame_shape[1] / 3 * startup_scan_counter / 3) xmax = int(frame_shape[1] / 3 + xmin) regions.append( calculate_region( frame_shape, xmin, ymin, xmax, ymax, region_min_size, multiplier=1.2, ) ) startup_scan_counter += 1 # resize regions and detect # seed with stationary objects detections = [ ( obj["label"], obj["score"], obj["box"], obj["area"], obj["ratio"], obj["region"], ) for obj in object_tracker.tracked_objects.values() if obj["id"] in stationary_object_ids ] for region in regions: detections.extend( detect( detect_config, object_detector, frame, model_config, region, objects_to_track, object_filters, ) ) ######### # merge objects ######### # group by name detected_object_groups = defaultdict(lambda: []) for detection in detections: detected_object_groups[detection[0]].append(detection) selected_objects = [] for group in detected_object_groups.values(): # apply non-maxima suppression to suppress weak, overlapping bounding boxes # o[2] is the box of the object: xmin, ymin, xmax, ymax # apply max/min to ensure values do not exceed the known frame size boxes = [ ( o[2][0], o[2][1], o[2][2] - o[2][0], o[2][3] - o[2][1], ) for o in group ] confidences = [o[1] for o in group] idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) # add objects for index in idxs: index = index if isinstance(index, np.int32) else index[0] obj = group[index] selected_objects.append(obj) # set the detections list to only include top objects detections = selected_objects # if detection was run on this frame, consolidate if len(regions) > 0: # group by name detected_object_groups = defaultdict(lambda: []) for detection in detections: detected_object_groups[detection[0]].append(detection) consolidated_detections = get_consolidated_object_detections( detected_object_groups ) tracked_detections = [ d for d in consolidated_detections if d[0] not in ALL_ATTRIBUTE_LABELS ] # now that we have refined our detections, we need to track objects object_tracker.match_and_update(frame_time, tracked_detections) # else, just update the frame times for the stationary objects else: object_tracker.update_frame_times(frame_time) # group the attribute detections based on what label they apply to attribute_detections = {} for label, attribute_labels in ATTRIBUTE_LABEL_MAP.items(): attribute_detections[label] = [ d for d in consolidated_detections if d[0] in attribute_labels ] # build detections and add attributes detections = {} for obj in object_tracker.tracked_objects.values(): attributes = [] # if the objects label has associated attribute detections if obj["label"] in attribute_detections.keys(): # add them to attributes if they intersect for attribute_detection in attribute_detections[obj["label"]]: if box_inside(obj["box"], (attribute_detection[2])): attributes.append( { "label": attribute_detection[0], "score": attribute_detection[1], "box": attribute_detection[2], } ) detections[obj["id"]] = {**obj, "attributes": attributes} # debug object tracking if False: bgr_frame = cv2.cvtColor( frame, cv2.COLOR_YUV2BGR_I420, ) object_tracker.debug_draw(bgr_frame, frame_time) cv2.imwrite( f"debug/frames/track-{'{:.6f}'.format(frame_time)}.jpg", bgr_frame ) # debug if False: bgr_frame = cv2.cvtColor( frame, cv2.COLOR_YUV2BGR_I420, ) for m_box in motion_boxes: cv2.rectangle( bgr_frame, (m_box[0], m_box[1]), (m_box[2], m_box[3]), (0, 0, 255), 2, ) for b in tracked_object_boxes: cv2.rectangle( bgr_frame, (b[0], b[1]), (b[2], b[3]), (255, 0, 0), 2, ) for obj in object_tracker.tracked_objects.values(): if obj["frame_time"] == frame_time: thickness = 2 color = model_config.colormap[obj["label"]] else: thickness = 1 color = (255, 0, 0) # draw the bounding boxes on the frame box = obj["box"] draw_box_with_label( bgr_frame, box[0], box[1], box[2], box[3], obj["label"], obj["id"], thickness=thickness, color=color, ) for region in regions: cv2.rectangle( bgr_frame, (region[0], region[1]), (region[2], region[3]), (0, 255, 0), 2, ) cv2.imwrite( f"debug/frames/{camera_name}-{'{:.6f}'.format(frame_time)}.jpg", bgr_frame, ) # add to the queue if not full if detected_objects_queue.full(): frame_manager.delete(f"{camera_name}{frame_time}") continue else: fps_tracker.update() fps.value = fps_tracker.eps() detected_objects_queue.put( ( camera_name, frame_time, detections, motion_boxes, regions, ) ) detection_fps.value = object_detector.fps.eps() frame_manager.close(f"{camera_name}{frame_time}")