import json import hashlib import datetime import time import copy import cv2 import threading import queue import numpy as np from collections import Counter, defaultdict import itertools import pyarrow.plasma as plasma import matplotlib.pyplot as plt from frigate.util import draw_box_with_label, PlasmaManager from frigate.edgetpu import load_labels PATH_TO_LABELS = '/labelmap.txt' LABELS = load_labels(PATH_TO_LABELS) cmap = plt.cm.get_cmap('tab10', len(LABELS.keys())) COLOR_MAP = {} for key, val in LABELS.items(): COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3]) def filter_false_positives(event): if len(event['history']) < 2: return True return False def zone_filtered(obj, object_config): object_name = obj['label'] object_filters = object_config.get('filters', {}) if object_name in object_filters: obj_settings = object_filters[object_name] # if the min area is larger than the # detected object, don't add it to detected objects if obj_settings.get('min_area',-1) > obj['area']: return True # if the detected object is larger than the # max area, don't add it to detected objects if obj_settings.get('max_area', 24000000) < obj['area']: return True # if the score is lower than the threshold, skip if obj_settings.get('threshold', 0) > obj['score']: return True return False class TrackedObjectProcessor(threading.Thread): def __init__(self, camera_config, zone_config, client, topic_prefix, tracked_objects_queue, event_queue, stop_event): threading.Thread.__init__(self) self.camera_config = camera_config self.zone_config = zone_config self.client = client self.topic_prefix = topic_prefix self.tracked_objects_queue = tracked_objects_queue self.event_queue = event_queue self.stop_event = stop_event self.camera_data = defaultdict(lambda: { 'best_objects': {}, 'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')), 'tracked_objects': {}, 'current_frame': np.zeros((720,1280,3), np.uint8), 'current_frame_time': 0.0, 'object_id': None }) self.zone_data = defaultdict(lambda: { 'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')), 'contours': {} }) # create zone contours for name, config in zone_config.items(): for camera, camera_zone_config in config.items(): coordinates = camera_zone_config['coordinates'] if isinstance(coordinates, list): self.zone_data[name]['contours'][camera] = np.array([[int(p.split(',')[0]), int(p.split(',')[1])] for p in coordinates]) elif isinstance(coordinates, str): points = coordinates.split(',') self.zone_data[name]['contours'][camera] = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)]) else: print(f"Unable to parse zone coordinates for {name} - {camera}") # set colors for zones colors = plt.cm.get_cmap('tab10', len(self.zone_data.keys())) for i, zone in enumerate(self.zone_data.values()): zone['color'] = tuple(int(round(255 * c)) for c in colors(i)[:3]) self.plasma_client = PlasmaManager(self.stop_event) def get_best(self, camera, label): if label in self.camera_data[camera]['best_objects']: return self.camera_data[camera]['best_objects'][label]['frame'] else: return None def get_current_frame(self, camera): return self.camera_data[camera]['current_frame'] def run(self): while True: if self.stop_event.is_set(): print(f"Exiting object processor...") break try: camera, frame_time, current_tracked_objects = self.tracked_objects_queue.get(True, 10) except queue.Empty: continue camera_config = self.camera_config[camera] best_objects = self.camera_data[camera]['best_objects'] current_object_status = self.camera_data[camera]['object_status'] tracked_objects = self.camera_data[camera]['tracked_objects'] current_ids = current_tracked_objects.keys() previous_ids = tracked_objects.keys() removed_ids = list(set(previous_ids).difference(current_ids)) new_ids = list(set(current_ids).difference(previous_ids)) updated_ids = list(set(current_ids).intersection(previous_ids)) for id in new_ids: # only register the object here if we are sure it isnt a false positive if not filter_false_positives(current_tracked_objects[id]): tracked_objects[id] = current_tracked_objects[id] # publish events to mqtt self.client.publish(f"{self.topic_prefix}/{camera}/events/start", json.dumps(tracked_objects[id]), retain=False) self.event_queue.put(('start', camera, tracked_objects[id])) for id in updated_ids: tracked_objects[id] = current_tracked_objects[id] for id in removed_ids: # publish events to mqtt tracked_objects[id]['end_time'] = frame_time self.client.publish(f"{self.topic_prefix}/{camera}/events/end", json.dumps(tracked_objects[id]), retain=False) self.event_queue.put(('end', camera, tracked_objects[id])) del tracked_objects[id] self.camera_data[camera]['current_frame_time'] = frame_time # build a dict of objects in each zone for current camera current_objects_in_zones = defaultdict(lambda: []) for obj in tracked_objects.values(): bottom_center = (obj['centroid'][0], obj['box'][3]) # check each zone for name, zone in self.zone_data.items(): current_contour = zone['contours'].get(camera, None) # if the current camera does not have a contour for this zone, skip if current_contour is None: continue # check if the object is in the zone and not filtered if (cv2.pointPolygonTest(current_contour, bottom_center, False) >= 0 and not zone_filtered(obj, self.zone_config[name][camera].get('filters', {}))): current_objects_in_zones[name].append(obj['label']) ### # Draw tracked objects on the frame ### current_frame = self.plasma_client.get(f"{camera}{frame_time}") if not current_frame is plasma.ObjectNotAvailable: # draw the bounding boxes on the frame for obj in tracked_objects.values(): thickness = 2 color = COLOR_MAP[obj['label']] if obj['frame_time'] != frame_time: thickness = 1 color = (255,0,0) # draw the bounding boxes on the frame box = obj['box'] draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color) # draw the regions on the frame region = obj['region'] cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1) if camera_config['snapshots']['show_timestamp']: time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S") cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2) if camera_config['snapshots']['draw_zones']: for name, zone in self.zone_data.items(): thickness = 2 if len(current_objects_in_zones[name]) == 0 else 8 if camera in zone['contours']: cv2.drawContours(current_frame, [zone['contours'][camera]], -1, zone['color'], thickness) ### # Set the current frame ### self.camera_data[camera]['current_frame'] = current_frame # delete the previous frame from the plasma store and update the object id if not self.camera_data[camera]['object_id'] is None: self.plasma_client.delete(self.camera_data[camera]['object_id']) self.camera_data[camera]['object_id'] = f"{camera}{frame_time}" ### # Maintain the highest scoring recent object and frame for each label ### for obj in tracked_objects.values(): # if the object wasn't seen on the current frame, skip it if obj['frame_time'] != frame_time: continue if obj['label'] in best_objects: now = datetime.datetime.now().timestamp() # if the object is a higher score than the current best score # or the current object is more than 1 minute old, use the new object if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60: obj['frame'] = np.copy(self.camera_data[camera]['current_frame']) best_objects[obj['label']] = obj # send updated snapshot over mqtt best_frame = cv2.cvtColor(obj['frame'], cv2.COLOR_RGB2BGR) ret, jpg = cv2.imencode('.jpg', best_frame) if ret: jpg_bytes = jpg.tobytes() self.client.publish(f"{self.topic_prefix}/{camera}/{obj['label']}/snapshot", jpg_bytes, retain=True) else: obj['frame'] = np.copy(self.camera_data[camera]['current_frame']) best_objects[obj['label']] = obj ### # Report over MQTT ### # get the zones that are relevant for this camera relevant_zones = [zone for zone, config in self.zone_config.items() if camera in config] for zone in relevant_zones: # create the set of labels in the current frame and previously reported labels_for_zone = set(current_objects_in_zones[zone] + list(self.zone_data[zone]['object_status'][camera].keys())) # for each label for label in labels_for_zone: # compute the current 'ON' vs 'OFF' status by checking if any camera sees the object in the zone previous_state = any([c[label] == 'ON' for c in self.zone_data[zone]['object_status'].values()]) self.zone_data[zone]['object_status'][camera][label] = 'ON' if label in current_objects_in_zones[zone] else 'OFF' new_state = any([c[label] == 'ON' for c in self.zone_data[zone]['object_status'].values()]) # if the value is changing, send over MQTT if previous_state == False and new_state == True: self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'ON', retain=False) elif previous_state == True and new_state == False: self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'OFF', retain=False) # count by type obj_counter = Counter() for obj in tracked_objects.values(): obj_counter[obj['label']] += 1 # report on detected objects for obj_name, count in obj_counter.items(): new_status = 'ON' if count > 0 else 'OFF' if new_status != current_object_status[obj_name]: current_object_status[obj_name] = new_status self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", new_status, retain=False) # send the best snapshot over mqtt best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR) ret, jpg = cv2.imencode('.jpg', best_frame) if ret: jpg_bytes = jpg.tobytes() self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True) # expire any objects that are ON and no longer detected expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter] for obj_name in expired_objects: current_object_status[obj_name] = 'OFF' self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", 'OFF', retain=False) # send updated snapshot over mqtt best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR) ret, jpg = cv2.imencode('.jpg', best_frame) if ret: jpg_bytes = jpg.tobytes() self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)