"""Model Utils""" import logging import os from typing import Any, Optional import numpy as np import onnxruntime as ort from playhouse.sqliteq import SqliteQueueDatabase from sklearn.preprocessing import LabelEncoder, Normalizer from sklearn.svm import SVC from frigate.util.builtin import deserialize try: import openvino as ov except ImportError: # openvino is not included pass logger = logging.getLogger(__name__) def get_ort_providers( force_cpu: bool = False, device: str = "AUTO", requires_fp16: bool = False ) -> tuple[list[str], list[dict[str, any]]]: if force_cpu: return ( ["CPUExecutionProvider"], [ { "enable_cpu_mem_arena": False, } ], ) providers = [] options = [] for provider in ort.get_available_providers(): if provider == "CUDAExecutionProvider": device_id = 0 if not device.isdigit() else int(device) providers.append(provider) options.append( { "arena_extend_strategy": "kSameAsRequested", "device_id": device_id, } ) elif provider == "TensorrtExecutionProvider": # TensorrtExecutionProvider uses too much memory without options to control it # so it is not enabled by default if device == "Tensorrt": os.makedirs( "/config/model_cache/tensorrt/ort/trt-engines", exist_ok=True ) device_id = 0 if not device.isdigit() else int(device) providers.append(provider) options.append( { "device_id": device_id, "trt_fp16_enable": requires_fp16 and os.environ.get("USE_FP_16", "True") != "False", "trt_timing_cache_enable": True, "trt_engine_cache_enable": True, "trt_timing_cache_path": "/config/model_cache/tensorrt/ort", "trt_engine_cache_path": "/config/model_cache/tensorrt/ort/trt-engines", } ) else: continue elif provider == "OpenVINOExecutionProvider": os.makedirs("/config/model_cache/openvino/ort", exist_ok=True) providers.append(provider) options.append( { "arena_extend_strategy": "kSameAsRequested", "cache_dir": "/config/model_cache/openvino/ort", "device_type": device, } ) elif provider == "CPUExecutionProvider": providers.append(provider) options.append( { "enable_cpu_mem_arena": False, } ) else: providers.append(provider) options.append({}) return (providers, options) class ONNXModelRunner: """Run onnx models optimally based on available hardware.""" def __init__(self, model_path: str, device: str, requires_fp16: bool = False): self.model_path = model_path self.ort: ort.InferenceSession = None self.ov: ov.Core = None providers, options = get_ort_providers(device == "CPU", device, requires_fp16) self.interpreter = None if "OpenVINOExecutionProvider" in providers: try: # use OpenVINO directly self.type = "ov" self.ov = ov.Core() self.ov.set_property( {ov.properties.cache_dir: "/config/model_cache/openvino"} ) self.interpreter = self.ov.compile_model( model=model_path, device_name=device ) except Exception as e: logger.warning( f"OpenVINO failed to build model, using CPU instead: {e}" ) self.interpreter = None # Use ONNXRuntime if self.interpreter is None: self.type = "ort" self.ort = ort.InferenceSession( model_path, providers=providers, provider_options=options, ) def get_input_names(self) -> list[str]: if self.type == "ov": input_names = [] for input in self.interpreter.inputs: input_names.extend(input.names) return input_names elif self.type == "ort": return [input.name for input in self.ort.get_inputs()] def run(self, input: dict[str, Any]) -> Any: if self.type == "ov": infer_request = self.interpreter.create_infer_request() input_tensor = list(input.values()) if len(input_tensor) == 1: input_tensor = ov.Tensor(array=input_tensor[0]) else: input_tensor = ov.Tensor(array=input_tensor) infer_request.infer(input_tensor) return [infer_request.get_output_tensor().data] elif self.type == "ort": return self.ort.run(None, input) class FaceClassificationModel: def __init__(self, db: SqliteQueueDatabase): self.db = db self.labeler: Optional[LabelEncoder] = None self.classifier: Optional[SVC] = None def __build_classifier(self) -> None: faces: list[tuple[str, bytes]] = self.db.execute_sql( "SELECT id, face_embedding FROM vec_faces" ).fetchall() embeddings = np.array([deserialize(f[1]) for f in faces]) self.labeler = LabelEncoder() norms = Normalizer(norm="l2").transform(embeddings) labels = self.labeler.fit_transform([f[0].split("-")[0] for f in faces]) self.classifier = SVC(kernel="linear", probability=True) self.classifier.fit(norms, labels) def clear_classifier(self) -> None: self.classifier = None self.labeler = None def classify_face(self, embedding: np.ndarray) -> Optional[tuple[str, float]]: if not self.classifier: self.__build_classifier() res = self.classifier.predict([embedding]) if not res: return None label = res[0] probabilities = self.classifier.predict_proba([embedding])[0] return ( self.labeler.inverse_transform([label])[0], round(probabilities[label], 2), )