import logging import numpy as np import openvino as ov from pydantic import Field from typing_extensions import Literal from frigate.detectors.detection_api import DetectionApi from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum logger = logging.getLogger(__name__) DETECTOR_KEY = "openvino" class OvDetectorConfig(BaseDetectorConfig): type: Literal[DETECTOR_KEY] device: str = Field(default=None, title="Device Type") class OvDetector(DetectionApi): type_key = DETECTOR_KEY def __init__(self, detector_config: OvDetectorConfig): self.ov_core = ov.Core() self.ov_model_type = detector_config.model.model_type self.h = detector_config.model.height self.w = detector_config.model.width self.interpreter = self.ov_core.compile_model( model=detector_config.model.path, device_name=detector_config.device ) self.model_invalid = False # Ensure the SSD model has the right input and output shapes if self.ov_model_type == ModelTypeEnum.ssd: model_inputs = self.interpreter.inputs model_outputs = self.interpreter.outputs if len(model_inputs) != 1: logger.error( f"SSD models must only have 1 input. Found {len(model_inputs)}." ) self.model_invalid = True if len(model_outputs) != 1: logger.error( f"SSD models must only have 1 output. Found {len(model_outputs)}." ) self.model_invalid = True if model_inputs[0].get_shape() != ov.Shape([1, self.w, self.h, 3]): logger.error( f"SSD model input doesn't match. Found {model_inputs[0].get_shape()}." ) self.model_invalid = True output_shape = model_outputs[0].get_shape() if output_shape[0] != 1 or output_shape[1] != 1 or output_shape[3] != 7: logger.error(f"SSD model output doesn't match. Found {output_shape}.") self.model_invalid = True if self.ov_model_type == ModelTypeEnum.yolox: self.output_indexes = 0 while True: try: tensor_shape = self.interpreter.output(self.output_indexes).shape logger.info( f"Model Output-{self.output_indexes} Shape: {tensor_shape}" ) self.output_indexes += 1 except Exception: logger.info(f"Model has {self.output_indexes} Output Tensors") break self.num_classes = tensor_shape[2] - 5 logger.info(f"YOLOX model has {self.num_classes} classes") self.set_strides_grids() def set_strides_grids(self): grids = [] expanded_strides = [] strides = [8, 16, 32] hsizes = [self.h // stride for stride in strides] wsizes = [self.w // stride for stride in strides] for hsize, wsize, stride in zip(hsizes, wsizes, strides): xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize)) grid = np.stack((xv, yv), 2).reshape(1, -1, 2) grids.append(grid) shape = grid.shape[:2] expanded_strides.append(np.full((*shape, 1), stride)) self.grids = np.concatenate(grids, 1) self.expanded_strides = np.concatenate(expanded_strides, 1) ## Takes in class ID, confidence score, and array of [x, y, w, h] that describes detection position, ## returns an array that's easily passable back to Frigate. def process_yolo(self, class_id, conf, pos): return [ class_id, # class ID conf, # confidence score (pos[1] - (pos[3] / 2)) / self.h, # y_min (pos[0] - (pos[2] / 2)) / self.w, # x_min (pos[1] + (pos[3] / 2)) / self.h, # y_max (pos[0] + (pos[2] / 2)) / self.w, # x_max ] def detect_raw(self, tensor_input): infer_request = self.interpreter.create_infer_request() # TODO: see if we can use shared_memory=True input_tensor = ov.Tensor(array=tensor_input) infer_request.infer(input_tensor) if self.ov_model_type == ModelTypeEnum.ssd: detections = np.zeros((20, 6), np.float32) if self.model_invalid: return detections results = infer_request.get_output_tensor(0).data[0][0] for i, (_, class_id, score, xmin, ymin, xmax, ymax) in enumerate(results): if i == 20: break detections[i] = [ class_id, float(score), ymin, xmin, ymax, xmax, ] return detections if self.ov_model_type == ModelTypeEnum.yolox: out_tensor = infer_request.get_output_tensor() # [x, y, h, w, box_score, class_no_1, ..., class_no_80], results = out_tensor.data results[..., :2] = (results[..., :2] + self.grids) * self.expanded_strides results[..., 2:4] = np.exp(results[..., 2:4]) * self.expanded_strides image_pred = results[0, ...] class_conf = np.max( image_pred[:, 5 : 5 + self.num_classes], axis=1, keepdims=True ) class_pred = np.argmax(image_pred[:, 5 : 5 + self.num_classes], axis=1) class_pred = np.expand_dims(class_pred, axis=1) conf_mask = (image_pred[:, 4] * class_conf.squeeze() >= 0.3).squeeze() # Detections ordered as (x1, y1, x2, y2, obj_conf, class_conf, class_pred) dets = np.concatenate((image_pred[:, :5], class_conf, class_pred), axis=1) dets = dets[conf_mask] ordered = dets[dets[:, 5].argsort()[::-1]][:20] detections = np.zeros((20, 6), np.float32) for i, object_detected in enumerate(ordered): detections[i] = self.process_yolo( object_detected[6], object_detected[5], object_detected[:4] ) return detections