import logging import cv2 import numpy as np logger = logging.getLogger(__name__) def preprocess(tensor_input, model_input_shape, model_input_element_type): model_input_shape = tuple(model_input_shape) assert tensor_input.dtype == np.uint8, f"tensor_input.dtype: {tensor_input.dtype}" if len(tensor_input.shape) == 3: tensor_input = tensor_input[np.newaxis, :] if model_input_element_type == np.uint8: # nothing to do for uint8 model input assert ( model_input_shape == tensor_input.shape ), f"model_input_shape: {model_input_shape}, tensor_input.shape: {tensor_input.shape}" return tensor_input assert ( model_input_element_type == np.float32 ), f"model_input_element_type: {model_input_element_type}" # tensor_input must be nhwc assert tensor_input.shape[3] == 3, f"tensor_input.shape: {tensor_input.shape}" if tensor_input.shape[1:3] != model_input_shape[2:4]: logger.warn( f"preprocess: tensor_input.shape {tensor_input.shape} and model_input_shape {model_input_shape} do not match!" ) # cv2.dnn.blobFromImage is faster than running it through numpy return cv2.dnn.blobFromImage( tensor_input[0], 1.0 / 255, (model_input_shape[3], model_input_shape[2]), None, swapRB=False, )