import cv2 import imutils import numpy as np from frigate.config import MotionConfig class MotionDetector: def __init__(self, frame_shape, config: MotionConfig): self.config = config self.frame_shape = frame_shape self.resize_factor = frame_shape[0] / config.frame_height self.motion_frame_size = ( config.frame_height, config.frame_height * frame_shape[1] // frame_shape[0], ) self.avg_frame = np.zeros(self.motion_frame_size, np.float) self.avg_delta = np.zeros(self.motion_frame_size, np.float) self.motion_frame_count = 0 self.frame_counter = 0 resized_mask = cv2.resize( config.mask, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR, ) self.mask = np.where(resized_mask == [0]) def detect(self, frame): motion_boxes = [] gray = frame[0 : self.frame_shape[0], 0 : self.frame_shape[1]] # resize frame resized_frame = cv2.resize( gray, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR, ) # Improve contrast minval = np.percentile(resized_frame, 5) maxval = np.percentile(resized_frame, 95) resized_frame = np.clip(resized_frame, minval, maxval) resized_frame = (((resized_frame - minval) / (maxval - minval)) * 255).astype( np.uint8 ) # convert to grayscale # resized_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY) # mask frame resized_frame[self.mask] = [255] # it takes ~30 frames to establish a baseline # dont bother looking for motion if self.frame_counter < 30: self.frame_counter += 1 else: # compare to average frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame)) # compute the average delta over the past few frames # higher values mean the current frame impacts the delta a lot, and a single raindrop may # register as motion, too low and a fast moving person wont be detected as motion cv2.accumulateWeighted(frameDelta, self.avg_delta, self.config.delta_alpha) # compute the threshold image for the current frame # TODO: threshold current_thresh = cv2.threshold( frameDelta, self.config.threshold, 255, cv2.THRESH_BINARY )[1] # black out everything in the avg_delta where there isnt motion in the current frame avg_delta_image = cv2.convertScaleAbs(self.avg_delta) avg_delta_image = cv2.bitwise_and(avg_delta_image, current_thresh) # then look for deltas above the threshold, but only in areas where there is a delta # in the current frame. this prevents deltas from previous frames from being included thresh = cv2.threshold( avg_delta_image, self.config.threshold, 255, cv2.THRESH_BINARY )[1] # dilate the thresholded image to fill in holes, then find contours # on thresholded image thresh = cv2.dilate(thresh, None, iterations=2) cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) # loop over the contours for c in cnts: # if the contour is big enough, count it as motion contour_area = cv2.contourArea(c) if contour_area > self.config.contour_area: x, y, w, h = cv2.boundingRect(c) motion_boxes.append( ( int(x * self.resize_factor), int(y * self.resize_factor), int((x + w) * self.resize_factor), int((y + h) * self.resize_factor), ) ) if len(motion_boxes) > 0: self.motion_frame_count += 1 if self.motion_frame_count >= 10: # only average in the current frame if the difference persists for a bit cv2.accumulateWeighted( resized_frame, self.avg_frame, self.config.frame_alpha ) else: # when no motion, just keep averaging the frames together cv2.accumulateWeighted( resized_frame, self.avg_frame, self.config.frame_alpha ) self.motion_frame_count = 0 return motion_boxes