import cv2 import imutils import numpy as np from frigate.config import MotionConfig class MotionDetector(): def __init__(self, frame_shape, mask, config: MotionConfig): self.config = config self.frame_shape = frame_shape self.resize_factor = frame_shape[0]/config.frame_height self.motion_frame_size = (config.frame_height, config.frame_height*frame_shape[1]//frame_shape[0]) self.avg_frame = np.zeros(self.motion_frame_size, np.float) self.avg_delta = np.zeros(self.motion_frame_size, np.float) self.motion_frame_count = 0 self.frame_counter = 0 resized_mask = cv2.resize(mask, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR) self.mask = np.where(resized_mask==[0]) def detect(self, frame): motion_boxes = [] gray = frame[0:self.frame_shape[0], 0:self.frame_shape[1]] # resize frame resized_frame = cv2.resize(gray, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR) # TODO: can I improve the contrast of the grayscale image here? # convert to grayscale # resized_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY) # mask frame resized_frame[self.mask] = [255] # it takes ~30 frames to establish a baseline # dont bother looking for motion if self.frame_counter < 30: self.frame_counter += 1 else: # compare to average frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame)) # compute the average delta over the past few frames # higher values mean the current frame impacts the delta a lot, and a single raindrop may # register as motion, too low and a fast moving person wont be detected as motion cv2.accumulateWeighted(frameDelta, self.avg_delta, self.config.delta_alpha) # compute the threshold image for the current frame # TODO: threshold current_thresh = cv2.threshold(frameDelta, self.config.threshold, 255, cv2.THRESH_BINARY)[1] # black out everything in the avg_delta where there isnt motion in the current frame avg_delta_image = cv2.convertScaleAbs(self.avg_delta) avg_delta_image = cv2.bitwise_and(avg_delta_image, current_thresh) # then look for deltas above the threshold, but only in areas where there is a delta # in the current frame. this prevents deltas from previous frames from being included thresh = cv2.threshold(avg_delta_image, self.config.threshold, 255, cv2.THRESH_BINARY)[1] # dilate the thresholded image to fill in holes, then find contours # on thresholded image thresh = cv2.dilate(thresh, None, iterations=2) cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) # loop over the contours for c in cnts: # if the contour is big enough, count it as motion contour_area = cv2.contourArea(c) if contour_area > self.config.contour_area: x, y, w, h = cv2.boundingRect(c) motion_boxes.append((x*self.resize_factor, y*self.resize_factor, (x+w)*self.resize_factor, (y+h)*self.resize_factor)) if len(motion_boxes) > 0: self.motion_frame_count += 1 if self.motion_frame_count >= 10: # only average in the current frame if the difference persists for a bit cv2.accumulateWeighted(resized_frame, self.avg_frame, self.config.frame_alpha) else: # when no motion, just keep averaging the frames together cv2.accumulateWeighted(resized_frame, self.avg_frame, self.config.frame_alpha) self.motion_frame_count = 0 return motion_boxes