import cv2 import time import queue import yaml import numpy as np from flask import Flask, Response, make_response import paho.mqtt.client as mqtt from frigate.video import Camera from frigate.object_detection import PreppedQueueProcessor with open('/config/config.yml') as f: CONFIG = yaml.safe_load(f) MQTT_HOST = CONFIG['mqtt']['host'] MQTT_PORT = CONFIG.get('mqtt', {}).get('port', 1883) MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate') MQTT_USER = CONFIG.get('mqtt', {}).get('user') MQTT_PASS = CONFIG.get('mqtt', {}).get('password') WEB_PORT = CONFIG.get('web_port', 5000) DEBUG = (CONFIG.get('debug', '0') == '1') def main(): # connect to mqtt and setup last will def on_connect(client, userdata, flags, rc): print("On connect called") # publish a message to signal that the service is running client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True) client = mqtt.Client() client.on_connect = on_connect client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True) if not MQTT_USER is None: client.username_pw_set(MQTT_USER, password=MQTT_PASS) client.connect(MQTT_HOST, MQTT_PORT, 60) client.loop_start() # Queue for prepped frames, max size set to (number of cameras * 5) max_queue_size = len(CONFIG['cameras'].items())*5 prepped_frame_queue = queue.Queue(max_queue_size) cameras = {} for name, config in CONFIG['cameras'].items(): cameras[name] = Camera(name, config, prepped_frame_queue, client, MQTT_TOPIC_PREFIX) prepped_queue_processor = PreppedQueueProcessor( cameras, prepped_frame_queue ) prepped_queue_processor.start() for name, camera in cameras.items(): camera.start() print("Capture process for {}: {}".format(name, camera.get_capture_pid())) # create a flask app that encodes frames a mjpeg on demand app = Flask(__name__) @app.route('//best_person.jpg') def best_person(camera_name): best_person_frame = cameras[camera_name].get_best_person() if best_person_frame is None: best_person_frame = np.zeros((720,1280,3), np.uint8) ret, jpg = cv2.imencode('.jpg', best_person_frame) response = make_response(jpg.tobytes()) response.headers['Content-Type'] = 'image/jpg' return response @app.route('/') def mjpeg_feed(camera_name): # return a multipart response return Response(imagestream(camera_name), mimetype='multipart/x-mixed-replace; boundary=frame') def imagestream(camera_name): while True: # max out at 5 FPS time.sleep(0.2) frame = cameras[camera_name].get_current_frame_with_objects() # encode the image into a jpg ret, jpg = cv2.imencode('.jpg', frame) yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n') app.run(host='0.0.0.0', port=WEB_PORT, debug=False) camera.join() if __name__ == '__main__': main()