from __future__ import annotations import json import logging import os from typing import Any, Dict, List, Optional, Union import numpy as np from pydantic import ( BaseModel, ConfigDict, Field, TypeAdapter, ValidationInfo, field_serializer, field_validator, model_validator, ) from ruamel.yaml import YAML from typing_extensions import Self from frigate.const import REGEX_JSON from frigate.detectors import DetectorConfig, ModelConfig from frigate.detectors.detector_config import BaseDetectorConfig from frigate.plus import PlusApi from frigate.util.builtin import ( deep_merge, get_ffmpeg_arg_list, ) from frigate.util.config import ( StreamInfoRetriever, get_relative_coordinates, migrate_frigate_config, ) from frigate.util.image import create_mask from frigate.util.services import auto_detect_hwaccel from .auth import AuthConfig from .base import FrigateBaseModel from .camera import CameraConfig, CameraLiveConfig from .camera.audio import AudioConfig from .camera.birdseye import BirdseyeConfig from .camera.detect import DetectConfig from .camera.ffmpeg import FfmpegConfig from .camera.genai import GenAIConfig from .camera.motion import MotionConfig from .camera.objects import FilterConfig, ObjectConfig from .camera.record import RecordConfig, RetainModeEnum from .camera.review import ReviewConfig from .camera.snapshots import SnapshotsConfig from .camera.timestamp import TimestampStyleConfig from .camera_group import CameraGroupConfig from .database import DatabaseConfig from .env import EnvVars from .logger import LoggerConfig from .mqtt import MqttConfig from .notification import NotificationConfig from .proxy import ProxyConfig from .semantic_search import ( FaceRecognitionConfig, LicensePlateRecognitionConfig, SemanticSearchConfig, ) from .telemetry import TelemetryConfig from .tls import TlsConfig from .ui import UIConfig __all__ = ["FrigateConfig"] logger = logging.getLogger(__name__) yaml = YAML() DEFAULT_CONFIG_FILE = "/config/config.yml" DEFAULT_CONFIG = """ mqtt: enabled: False cameras: name_of_your_camera: # <------ Name the camera enabled: True ffmpeg: inputs: - path: rtsp://10.0.10.10:554/rtsp # <----- The stream you want to use for detection roles: - detect detect: enabled: False # <---- disable detection until you have a working camera feed width: 1280 height: 720 """ DEFAULT_DETECTORS = {"cpu": {"type": "cpu"}} DEFAULT_DETECT_DIMENSIONS = {"width": 1280, "height": 720} # stream info handler stream_info_retriever = StreamInfoRetriever() class RuntimeMotionConfig(MotionConfig): raw_mask: Union[str, List[str]] = "" mask: np.ndarray = None def __init__(self, **config): frame_shape = config.get("frame_shape", (1, 1)) mask = get_relative_coordinates(config.get("mask", ""), frame_shape) config["raw_mask"] = mask if mask: config["mask"] = create_mask(frame_shape, mask) else: empty_mask = np.zeros(frame_shape, np.uint8) empty_mask[:] = 255 config["mask"] = empty_mask super().__init__(**config) def dict(self, **kwargs): ret = super().model_dump(**kwargs) if "mask" in ret: ret["mask"] = ret["raw_mask"] ret.pop("raw_mask") return ret @field_serializer("mask", when_used="json") def serialize_mask(self, value: Any, info): return self.raw_mask @field_serializer("raw_mask", when_used="json") def serialize_raw_mask(self, value: Any, info): return None model_config = ConfigDict(arbitrary_types_allowed=True, extra="ignore") class RuntimeFilterConfig(FilterConfig): mask: Optional[np.ndarray] = None raw_mask: Optional[Union[str, List[str]]] = None def __init__(self, **config): frame_shape = config.get("frame_shape", (1, 1)) mask = get_relative_coordinates(config.get("mask"), frame_shape) config["raw_mask"] = mask if mask is not None: config["mask"] = create_mask(frame_shape, mask) super().__init__(**config) def dict(self, **kwargs): ret = super().model_dump(**kwargs) if "mask" in ret: ret["mask"] = ret["raw_mask"] ret.pop("raw_mask") return ret model_config = ConfigDict(arbitrary_types_allowed=True, extra="ignore") class RestreamConfig(BaseModel): model_config = ConfigDict(extra="allow") def verify_semantic_search_dependent_configs(config: FrigateConfig) -> None: """Verify that semantic search is enabled if required features are enabled.""" if not config.semantic_search.enabled: if config.genai.enabled: raise ValueError("Genai requires semantic search to be enabled.") if config.face_recognition.enabled: raise ValueError("Face recognition requires semantic to be enabled.") def verify_config_roles(camera_config: CameraConfig) -> None: """Verify that roles are setup in the config correctly.""" assigned_roles = list( set([r for i in camera_config.ffmpeg.inputs for r in i.roles]) ) if camera_config.record.enabled and "record" not in assigned_roles: raise ValueError( f"Camera {camera_config.name} has record enabled, but record is not assigned to an input." ) if camera_config.audio.enabled and "audio" not in assigned_roles: raise ValueError( f"Camera {camera_config.name} has audio events enabled, but audio is not assigned to an input." ) def verify_valid_live_stream_name( frigate_config: FrigateConfig, camera_config: CameraConfig ) -> ValueError | None: """Verify that a restream exists to use for live view.""" if ( camera_config.live.stream_name not in frigate_config.go2rtc.model_dump().get("streams", {}).keys() ): return ValueError( f"No restream with name {camera_config.live.stream_name} exists for camera {camera_config.name}." ) def verify_recording_retention(camera_config: CameraConfig) -> None: """Verify that recording retention modes are ranked correctly.""" rank_map = { RetainModeEnum.all: 0, RetainModeEnum.motion: 1, RetainModeEnum.active_objects: 2, } if ( camera_config.record.retain.days != 0 and rank_map[camera_config.record.retain.mode] > rank_map[camera_config.record.alerts.retain.mode] ): logger.warning( f"{camera_config.name}: Recording retention is configured for {camera_config.record.retain.mode} and alert retention is configured for {camera_config.record.alerts.retain.mode}. The more restrictive retention policy will be applied." ) if ( camera_config.record.retain.days != 0 and rank_map[camera_config.record.retain.mode] > rank_map[camera_config.record.detections.retain.mode] ): logger.warning( f"{camera_config.name}: Recording retention is configured for {camera_config.record.retain.mode} and detection retention is configured for {camera_config.record.detections.retain.mode}. The more restrictive retention policy will be applied." ) def verify_recording_segments_setup_with_reasonable_time( camera_config: CameraConfig, ) -> None: """Verify that recording segments are setup and segment time is not greater than 60.""" record_args: list[str] = get_ffmpeg_arg_list( camera_config.ffmpeg.output_args.record ) if record_args[0].startswith("preset"): return try: seg_arg_index = record_args.index("-segment_time") except ValueError: raise ValueError(f"Camera {camera_config.name} has no segment_time in \ recording output args, segment args are required for record.") if int(record_args[seg_arg_index + 1]) > 60: raise ValueError(f"Camera {camera_config.name} has invalid segment_time output arg, \ segment_time must be 60 or less.") def verify_zone_objects_are_tracked(camera_config: CameraConfig) -> None: """Verify that user has not entered zone objects that are not in the tracking config.""" for zone_name, zone in camera_config.zones.items(): for obj in zone.objects: if obj not in camera_config.objects.track: raise ValueError( f"Zone {zone_name} is configured to track {obj} but that object type is not added to objects -> track." ) def verify_required_zones_exist(camera_config: CameraConfig) -> None: for det_zone in camera_config.review.detections.required_zones: if det_zone not in camera_config.zones.keys(): raise ValueError( f"Camera {camera_config.name} has a required zone for detections {det_zone} that is not defined." ) for det_zone in camera_config.review.alerts.required_zones: if det_zone not in camera_config.zones.keys(): raise ValueError( f"Camera {camera_config.name} has a required zone for alerts {det_zone} that is not defined." ) def verify_autotrack_zones(camera_config: CameraConfig) -> ValueError | None: """Verify that required_zones are specified when autotracking is enabled.""" if ( camera_config.onvif.autotracking.enabled and not camera_config.onvif.autotracking.required_zones ): raise ValueError( f"Camera {camera_config.name} has autotracking enabled, required_zones must be set to at least one of the camera's zones." ) def verify_motion_and_detect(camera_config: CameraConfig) -> ValueError | None: """Verify that required_zones are specified when autotracking is enabled.""" if camera_config.detect.enabled and not camera_config.motion.enabled: raise ValueError( f"Camera {camera_config.name} has motion detection disabled and object detection enabled but object detection requires motion detection." ) class FrigateConfig(FrigateBaseModel): version: Optional[str] = Field(default=None, title="Current config version.") # Fields that install global state should be defined first, so that their validators run first. environment_vars: EnvVars = Field( default_factory=dict, title="Frigate environment variables." ) logger: LoggerConfig = Field( default_factory=LoggerConfig, title="Logging configuration.", validate_default=True, ) # Global config auth: AuthConfig = Field(default_factory=AuthConfig, title="Auth configuration.") database: DatabaseConfig = Field( default_factory=DatabaseConfig, title="Database configuration." ) go2rtc: RestreamConfig = Field( default_factory=RestreamConfig, title="Global restream configuration." ) mqtt: MqttConfig = Field(title="MQTT configuration.") notifications: NotificationConfig = Field( default_factory=NotificationConfig, title="Notification configuration." ) proxy: ProxyConfig = Field( default_factory=ProxyConfig, title="Proxy configuration." ) telemetry: TelemetryConfig = Field( default_factory=TelemetryConfig, title="Telemetry configuration." ) tls: TlsConfig = Field(default_factory=TlsConfig, title="TLS configuration.") semantic_search: SemanticSearchConfig = Field( default_factory=SemanticSearchConfig, title="Semantic search configuration." ) face_recognition: FaceRecognitionConfig = Field( default_factory=FaceRecognitionConfig, title="Face recognition config." ) lpr: LicensePlateRecognitionConfig = Field( default_factory=LicensePlateRecognitionConfig, title="License Plate recognition config.", ) ui: UIConfig = Field(default_factory=UIConfig, title="UI configuration.") # Detector config detectors: Dict[str, BaseDetectorConfig] = Field( default=DEFAULT_DETECTORS, title="Detector hardware configuration.", ) model: ModelConfig = Field( default_factory=ModelConfig, title="Detection model configuration." ) # Camera config cameras: Dict[str, CameraConfig] = Field(title="Camera configuration.") audio: AudioConfig = Field( default_factory=AudioConfig, title="Global Audio events configuration." ) birdseye: BirdseyeConfig = Field( default_factory=BirdseyeConfig, title="Birdseye configuration." ) detect: DetectConfig = Field( default_factory=DetectConfig, title="Global object tracking configuration." ) ffmpeg: FfmpegConfig = Field( default_factory=FfmpegConfig, title="Global FFmpeg configuration." ) genai: GenAIConfig = Field( default_factory=GenAIConfig, title="Generative AI configuration." ) live: CameraLiveConfig = Field( default_factory=CameraLiveConfig, title="Live playback settings." ) motion: Optional[MotionConfig] = Field( default=None, title="Global motion detection configuration." ) objects: ObjectConfig = Field( default_factory=ObjectConfig, title="Global object configuration." ) record: RecordConfig = Field( default_factory=RecordConfig, title="Global record configuration." ) review: ReviewConfig = Field( default_factory=ReviewConfig, title="Review configuration." ) snapshots: SnapshotsConfig = Field( default_factory=SnapshotsConfig, title="Global snapshots configuration." ) timestamp_style: TimestampStyleConfig = Field( default_factory=TimestampStyleConfig, title="Global timestamp style configuration.", ) camera_groups: Dict[str, CameraGroupConfig] = Field( default_factory=dict, title="Camera group configuration" ) _plus_api: PlusApi @property def plus_api(self) -> PlusApi: return self._plus_api @model_validator(mode="after") def post_validation(self, info: ValidationInfo) -> Self: # Load plus api from context, if possible. self._plus_api = None if isinstance(info.context, dict): self._plus_api = info.context.get("plus_api") # Ensure self._plus_api is set, if no explicit value is provided. if self._plus_api is None: self._plus_api = PlusApi() # set notifications state self.notifications.enabled_in_config = self.notifications.enabled # set default min_score for object attributes for attribute in self.model.all_attributes: if not self.objects.filters.get(attribute): self.objects.filters[attribute] = FilterConfig(min_score=0.7) elif self.objects.filters[attribute].min_score == 0.5: self.objects.filters[attribute].min_score = 0.7 # auto detect hwaccel args if self.ffmpeg.hwaccel_args == "auto": self.ffmpeg.hwaccel_args = auto_detect_hwaccel() # Global config to propagate down to camera level global_config = self.model_dump( include={ "audio": ..., "birdseye": ..., "record": ..., "snapshots": ..., "live": ..., "objects": ..., "review": ..., "genai": ..., "motion": ..., "detect": ..., "ffmpeg": ..., "timestamp_style": ..., }, exclude_unset=True, ) for name, camera in self.cameras.items(): merged_config = deep_merge( camera.model_dump(exclude_unset=True), global_config ) camera_config: CameraConfig = CameraConfig.model_validate( {"name": name, **merged_config} ) if camera_config.ffmpeg.hwaccel_args == "auto": camera_config.ffmpeg.hwaccel_args = self.ffmpeg.hwaccel_args for input in camera_config.ffmpeg.inputs: need_record_fourcc = False and "record" in input.roles need_detect_dimensions = "detect" in input.roles and ( camera_config.detect.height is None or camera_config.detect.width is None ) if need_detect_dimensions or need_record_fourcc: stream_info = {"width": 0, "height": 0, "fourcc": None} try: stream_info = stream_info_retriever.get_stream_info( self.ffmpeg, input.path ) except Exception: logger.warning( f"Error detecting stream parameters automatically for {input.path} Applying default values." ) stream_info = {"width": 0, "height": 0, "fourcc": None} if need_detect_dimensions: camera_config.detect.width = ( stream_info["width"] if stream_info.get("width") else DEFAULT_DETECT_DIMENSIONS["width"] ) camera_config.detect.height = ( stream_info["height"] if stream_info.get("height") else DEFAULT_DETECT_DIMENSIONS["height"] ) if need_record_fourcc: # Apple only supports HEVC if it is hvc1 (vs. hev1) camera_config.ffmpeg.output_args._force_record_hvc1 = ( stream_info["fourcc"] == "hevc" if stream_info.get("hevc") else False ) # Warn if detect fps > 10 if camera_config.detect.fps > 10: logger.warning( f"{camera_config.name} detect fps is set to {camera_config.detect.fps}. This does NOT need to match your camera's frame rate. High values could lead to reduced performance. Recommended value is 5." ) # Default min_initialized configuration min_initialized = int(camera_config.detect.fps / 2) if camera_config.detect.min_initialized is None: camera_config.detect.min_initialized = min_initialized # Default max_disappeared configuration max_disappeared = camera_config.detect.fps * 5 if camera_config.detect.max_disappeared is None: camera_config.detect.max_disappeared = max_disappeared # Default stationary_threshold configuration stationary_threshold = camera_config.detect.fps * 10 if camera_config.detect.stationary.threshold is None: camera_config.detect.stationary.threshold = stationary_threshold # default to the stationary_threshold if not defined if camera_config.detect.stationary.interval is None: camera_config.detect.stationary.interval = stationary_threshold # set config pre-value camera_config.audio.enabled_in_config = camera_config.audio.enabled camera_config.record.enabled_in_config = camera_config.record.enabled camera_config.onvif.autotracking.enabled_in_config = ( camera_config.onvif.autotracking.enabled ) # Add default filters object_keys = camera_config.objects.track if camera_config.objects.filters is None: camera_config.objects.filters = {} object_keys = object_keys - camera_config.objects.filters.keys() for key in object_keys: camera_config.objects.filters[key] = FilterConfig() # Apply global object masks and convert masks to numpy array for object, filter in camera_config.objects.filters.items(): if camera_config.objects.mask: filter_mask = [] if filter.mask is not None: filter_mask = ( filter.mask if isinstance(filter.mask, list) else [filter.mask] ) object_mask = ( get_relative_coordinates( ( camera_config.objects.mask if isinstance(camera_config.objects.mask, list) else [camera_config.objects.mask] ), camera_config.frame_shape, ) or [] ) filter.mask = filter_mask + object_mask # Set runtime filter to create masks camera_config.objects.filters[object] = RuntimeFilterConfig( frame_shape=camera_config.frame_shape, **filter.model_dump(exclude_unset=True), ) # Convert motion configuration if camera_config.motion is None: camera_config.motion = RuntimeMotionConfig( frame_shape=camera_config.frame_shape ) else: camera_config.motion = RuntimeMotionConfig( frame_shape=camera_config.frame_shape, raw_mask=camera_config.motion.mask, **camera_config.motion.model_dump(exclude_unset=True), ) camera_config.motion.enabled_in_config = camera_config.motion.enabled # generate zone contours if len(camera_config.zones) > 0: for zone in camera_config.zones.values(): zone.generate_contour(camera_config.frame_shape) # Set live view stream if none is set if not camera_config.live.stream_name: camera_config.live.stream_name = name # generate the ffmpeg commands camera_config.create_ffmpeg_cmds() self.cameras[name] = camera_config verify_config_roles(camera_config) verify_valid_live_stream_name(self, camera_config) verify_recording_retention(camera_config) verify_recording_segments_setup_with_reasonable_time(camera_config) verify_zone_objects_are_tracked(camera_config) verify_required_zones_exist(camera_config) verify_autotrack_zones(camera_config) verify_motion_and_detect(camera_config) # get list of unique enabled labels for tracking enabled_labels = set(self.objects.track) for camera in self.cameras.values(): enabled_labels.update(camera.objects.track) self.model.create_colormap(sorted(enabled_labels)) self.model.check_and_load_plus_model(self.plus_api) for key, detector in self.detectors.items(): adapter = TypeAdapter(DetectorConfig) model_dict = ( detector if isinstance(detector, dict) else detector.model_dump(warnings="none") ) detector_config: DetectorConfig = adapter.validate_python(model_dict) if detector_config.model is None: detector_config.model = self.model.model_copy() else: path = detector_config.model.path detector_config.model = self.model.model_copy() detector_config.model.path = path if "path" not in model_dict or len(model_dict.keys()) > 1: logger.warning( "Customizing more than a detector model path is unsupported." ) merged_model = deep_merge( detector_config.model.model_dump(exclude_unset=True, warnings="none"), self.model.model_dump(exclude_unset=True, warnings="none"), ) if "path" not in merged_model: if detector_config.type == "cpu": merged_model["path"] = "/cpu_model.tflite" elif detector_config.type == "edgetpu": merged_model["path"] = "/edgetpu_model.tflite" detector_config.model = ModelConfig.model_validate(merged_model) detector_config.model.check_and_load_plus_model( self.plus_api, detector_config.type ) detector_config.model.compute_model_hash() self.detectors[key] = detector_config verify_semantic_search_dependent_configs(self) return self @field_validator("cameras") @classmethod def ensure_zones_and_cameras_have_different_names(cls, v: Dict[str, CameraConfig]): zones = [zone for camera in v.values() for zone in camera.zones.keys()] for zone in zones: if zone in v.keys(): raise ValueError("Zones cannot share names with cameras") return v @classmethod def load(cls, **kwargs): config_path = os.environ.get("CONFIG_FILE", DEFAULT_CONFIG_FILE) if not os.path.isfile(config_path): config_path = config_path.replace("yml", "yaml") # No configuration file found, create one. new_config = False if not os.path.isfile(config_path): logger.info("No config file found, saving default config") config_path = DEFAULT_CONFIG_FILE new_config = True else: # Check if the config file needs to be migrated. migrate_frigate_config(config_path) # Finally, load the resulting configuration file. with open(config_path, "a+" if new_config else "r") as f: # Only write the default config if the opened file is non-empty. This can happen as # a race condition. It's extremely unlikely, but eh. Might as well check it. if new_config and f.tell() == 0: f.write(DEFAULT_CONFIG) logger.info( "Created default config file, see the getting started docs \ for configuration https://docs.frigate.video/guides/getting_started" ) f.seek(0) return FrigateConfig.parse(f, **kwargs) @classmethod def parse(cls, config, *, is_json=None, **context): # If config is a file, read its contents. if hasattr(config, "read"): fname = getattr(config, "name", None) config = config.read() # Try to guess the value of is_json from the file extension. if is_json is None and fname: _, ext = os.path.splitext(fname) if ext in (".yaml", ".yml"): is_json = False elif ext == ".json": is_json = True # At this point, try to sniff the config string, to guess if it is json or not. if is_json is None: is_json = REGEX_JSON.match(config) is not None # Parse the config into a dictionary. if is_json: config = json.load(config) else: config = yaml.load(config) # Validate and return the config dict. return cls.parse_object(config, **context) @classmethod def parse_yaml(cls, config_yaml, **context): return cls.parse(config_yaml, is_json=False, **context) @classmethod def parse_object( cls, obj: Any, *, plus_api: Optional[PlusApi] = None, install: bool = False ): return cls.model_validate( obj, context={"plus_api": plus_api, "install": install} )