import datetime import time import cv2 import threading import numpy as np from edgetpu.detection.engine import DetectionEngine from . util import tonumpyarray # Path to frozen detection graph. This is the actual model that is used for the object detection. PATH_TO_CKPT = '/frozen_inference_graph.pb' # List of the strings that is used to add correct label for each box. PATH_TO_LABELS = '/label_map.pbtext' # Function to read labels from text files. def ReadLabelFile(file_path): with open(file_path, 'r') as f: lines = f.readlines() ret = {} for line in lines: pair = line.strip().split(maxsplit=1) ret[int(pair[0])] = pair[1].strip() return ret def detect_objects(prepped_frame_array, prepped_frame_time, prepped_frame_ready, prepped_frame_grabbed, prepped_frame_box, object_queue, debug): prepped_frame_np = tonumpyarray(prepped_frame_array) # Load the edgetpu engine and labels engine = DetectionEngine(PATH_TO_CKPT) labels = ReadLabelFile(PATH_TO_LABELS) frame_time = 0.0 region_box = [0,0,0] while True: # wait until a frame is ready prepped_frame_ready.wait() prepped_frame_copy = prepped_frame_np.copy() frame_time = prepped_frame_time.value region_box[:] = prepped_frame_box prepped_frame_grabbed.set() # print("Grabbed " + str(region_box[1]) + "," + str(region_box[2])) # Actual detection. objects = engine.DetectWithInputTensor(prepped_frame_copy, threshold=0.5, top_k=3) # time.sleep(0.1) # objects = [] print(engine.get_inference_time()) # put detected objects in the queue if objects: for obj in objects: box = obj.bounding_box.flatten().tolist() object_queue.put({ 'frame_time': frame_time, 'name': str(labels[obj.label_id]), 'score': float(obj.score), 'xmin': int((box[0] * region_box[0]) + region_box[1]), 'ymin': int((box[1] * region_box[0]) + region_box[2]), 'xmax': int((box[2] * region_box[0]) + region_box[1]), 'ymax': int((box[3] * region_box[0]) + region_box[2]) }) else: object_queue.put({ 'frame_time': frame_time, 'name': 'dummy', 'score': 0.99, 'xmin': int(0 + region_box[1]), 'ymin': int(0 + region_box[2]), 'xmax': int(10 + region_box[1]), 'ymax': int(10 + region_box[2]) }) class PreppedQueueProcessor(threading.Thread): def __init__(self, prepped_frame_array, prepped_frame_time, prepped_frame_ready, prepped_frame_grabbed, prepped_frame_box, prepped_frame_queue): threading.Thread.__init__(self) self.prepped_frame_array = prepped_frame_array self.prepped_frame_time = prepped_frame_time self.prepped_frame_ready = prepped_frame_ready self.prepped_frame_grabbed = prepped_frame_grabbed self.prepped_frame_box = prepped_frame_box self.prepped_frame_queue = prepped_frame_queue def run(self): prepped_frame_np = tonumpyarray(self.prepped_frame_array) # process queue... while True: frame = self.prepped_frame_queue.get() # print(self.prepped_frame_queue.qsize()) prepped_frame_np[:] = frame['frame'] self.prepped_frame_time.value = frame['frame_time'] self.prepped_frame_box[0] = frame['region_size'] self.prepped_frame_box[1] = frame['region_x_offset'] self.prepped_frame_box[2] = frame['region_y_offset'] # print("Passed " + str(frame['region_x_offset']) + "," + str(frame['region_x_offset'])) self.prepped_frame_ready.set() self.prepped_frame_grabbed.wait() self.prepped_frame_grabbed.clear() self.prepped_frame_ready.clear() # should this be a region class? class FramePrepper(threading.Thread): def __init__(self, shared_frame, frame_time, frame_ready, frame_lock, motion_detected, region_size, region_x_offset, region_y_offset, prepped_frame_queue): threading.Thread.__init__(self) self.shared_frame = shared_frame self.frame_time = frame_time self.frame_ready = frame_ready self.frame_lock = frame_lock self.motion_detected = motion_detected self.region_size = region_size self.region_x_offset = region_x_offset self.region_y_offset = region_y_offset self.prepped_frame_queue = prepped_frame_queue def run(self): frame_time = 0.0 while True: now = datetime.datetime.now().timestamp() # wait until motion is detected self.motion_detected.wait() with self.frame_ready: # if there isnt a frame ready for processing or it is old, wait for a new frame if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5: self.frame_ready.wait() # make a copy of the cropped frame with self.frame_lock: cropped_frame = self.shared_frame[self.region_y_offset:self.region_y_offset+self.region_size, self.region_x_offset:self.region_x_offset+self.region_size].copy() frame_time = self.frame_time.value # convert to RGB cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB) # Resize to 300x300 if needed if cropped_frame_rgb.shape != (300, 300, 3): cropped_frame_rgb = cv2.resize(cropped_frame_rgb, dsize=(300, 300), interpolation=cv2.INTER_LINEAR) # Expand dimensions since the model expects images to have shape: [1, 300, 300, 3] frame_expanded = np.expand_dims(cropped_frame_rgb, axis=0) # print("Prepped frame at " + str(self.region_x_offset) + "," + str(self.region_y_offset)) # add the frame to the queue if not self.prepped_frame_queue.full(): self.prepped_frame_queue.put({ 'frame_time': frame_time, 'frame': frame_expanded.flatten().copy(), 'region_size': self.region_size, 'region_x_offset': self.region_x_offset, 'region_y_offset': self.region_y_offset }) # else: # print("queue full. moving on")