import datetime import time import cv2 import threading import copy import prctl import numpy as np from edgetpu.detection.engine import DetectionEngine from frigate.util import tonumpyarray, LABELS, PATH_TO_CKPT, calculate_region class PreppedQueueProcessor(threading.Thread): def __init__(self, cameras, prepped_frame_queue, fps): threading.Thread.__init__(self) self.cameras = cameras self.prepped_frame_queue = prepped_frame_queue # Load the edgetpu engine and labels self.engine = DetectionEngine(PATH_TO_CKPT) self.labels = LABELS self.fps = fps self.avg_inference_speed = 10 def run(self): prctl.set_name(self.__class__.__name__) # process queue... while True: frame = self.prepped_frame_queue.get() # Actual detection. frame['detected_objects'] = self.engine.detect_with_input_tensor(frame['frame'], threshold=0.2, top_k=5) self.fps.update() self.avg_inference_speed = (self.avg_inference_speed*9 + self.engine.get_inference_time())/10 self.cameras[frame['camera_name']].detected_objects_queue.put(frame) class RegionRequester(threading.Thread): def __init__(self, camera): threading.Thread.__init__(self) self.camera = camera def run(self): prctl.set_name(self.__class__.__name__) frame_time = 0.0 while True: now = datetime.datetime.now().timestamp() with self.camera.frame_ready: # if there isnt a frame ready for processing or it is old, wait for a new frame if self.camera.frame_time.value == frame_time or (now - self.camera.frame_time.value) > 0.5: self.camera.frame_ready.wait() # make a copy of the frame_time frame_time = self.camera.frame_time.value # grab the current tracked objects with self.camera.object_tracker.tracked_objects_lock: tracked_objects = copy.deepcopy(self.camera.object_tracker.tracked_objects).values() with self.camera.regions_in_process_lock: self.camera.regions_in_process[frame_time] = len(self.camera.config['regions']) self.camera.regions_in_process[frame_time] += len(tracked_objects) for index, region in enumerate(self.camera.config['regions']): self.camera.resize_queue.put({ 'camera_name': self.camera.name, 'frame_time': frame_time, 'region_id': index, 'size': region['size'], 'x_offset': region['x_offset'], 'y_offset': region['y_offset'] }) # request a region for tracked objects for tracked_object in tracked_objects: box = tracked_object['box'] # calculate a new region that will hopefully get the entire object (size, x_offset, y_offset) = calculate_region(self.camera.frame_shape, box['xmin'], box['ymin'], box['xmax'], box['ymax']) self.camera.resize_queue.put({ 'camera_name': self.camera.name, 'frame_time': frame_time, 'region_id': -1, 'size': size, 'x_offset': x_offset, 'y_offset': y_offset }) class RegionPrepper(threading.Thread): def __init__(self, camera, frame_cache, resize_request_queue, prepped_frame_queue): threading.Thread.__init__(self) self.camera = camera self.frame_cache = frame_cache self.resize_request_queue = resize_request_queue self.prepped_frame_queue = prepped_frame_queue def run(self): prctl.set_name(self.__class__.__name__) while True: resize_request = self.resize_request_queue.get() # if the queue is over 100 items long, only prep dynamic regions if resize_request['region_id'] != -1 and self.prepped_frame_queue.qsize() > 100: with self.camera.regions_in_process_lock: self.camera.regions_in_process[resize_request['frame_time']] -= 1 if self.camera.regions_in_process[resize_request['frame_time']] == 0: del self.camera.regions_in_process[resize_request['frame_time']] self.camera.skipped_region_tracker.update() continue frame = self.frame_cache.get(resize_request['frame_time'], None) if frame is None: print("RegionPrepper: frame_time not in frame_cache") continue # make a copy of the region cropped_frame = frame[resize_request['y_offset']:resize_request['y_offset']+resize_request['size'], resize_request['x_offset']:resize_request['x_offset']+resize_request['size']].copy() # Resize to 300x300 if needed if cropped_frame.shape != (300, 300, 3): # TODO: use Pillow-SIMD? cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR) # Expand dimensions since the model expects images to have shape: [1, 300, 300, 3] frame_expanded = np.expand_dims(cropped_frame, axis=0) # add the frame to the queue resize_request['frame'] = frame_expanded.flatten().copy() self.prepped_frame_queue.put(resize_request)