import os import time import datetime import cv2 import queue import threading import ctypes import pyarrow.plasma as plasma import multiprocessing as mp import subprocess as sp import numpy as np import copy import itertools import json import base64 from typing import Dict, List from collections import defaultdict from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond, listen, FrameManager, PlasmaFrameManager from frigate.objects import ObjectTracker from frigate.edgetpu import RemoteObjectDetector from frigate.motion import MotionDetector def get_frame_shape(source): ffprobe_cmd = " ".join([ 'ffprobe', '-v', 'panic', '-show_error', '-show_streams', '-of', 'json', '"'+source+'"' ]) print(ffprobe_cmd) p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True) (output, err) = p.communicate() p_status = p.wait() info = json.loads(output) print(info) video_info = [s for s in info['streams'] if s['codec_type'] == 'video'][0] if video_info['height'] != 0 and video_info['width'] != 0: return (video_info['height'], video_info['width'], 3) # fallback to using opencv if ffprobe didnt succeed video = cv2.VideoCapture(source) ret, frame = video.read() frame_shape = frame.shape video.release() return frame_shape def get_ffmpeg_input(ffmpeg_input): frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')} return ffmpeg_input.format(**frigate_vars) def filtered(obj, objects_to_track, object_filters, mask=None): object_name = obj[0] if not object_name in objects_to_track: return True if object_name in object_filters: obj_settings = object_filters[object_name] # if the min area is larger than the # detected object, don't add it to detected objects if obj_settings.get('min_area',-1) > obj[3]: return True # if the detected object is larger than the # max area, don't add it to detected objects if obj_settings.get('max_area', 24000000) < obj[3]: return True # if the score is lower than the min_score, skip if obj_settings.get('min_score', 0) > obj[1]: return True # compute the coordinates of the object and make sure # the location isnt outside the bounds of the image (can happen from rounding) y_location = min(int(obj[2][3]), len(mask)-1) x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(mask[0])-1) # if the object is in a masked location, don't add it to detected objects if (not mask is None) and (mask[y_location][x_location] == 0): return True return False def create_tensor_input(frame, region): cropped_frame = frame[region[1]:region[3], region[0]:region[2]] # Resize to 300x300 if needed if cropped_frame.shape != (300, 300, 3): cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR) # Expand dimensions since the model expects images to have shape: [1, 300, 300, 3] return np.expand_dims(cropped_frame, axis=0) def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process=None): if not ffmpeg_process is None: print("Terminating the existing ffmpeg process...") ffmpeg_process.terminate() try: print("Waiting for ffmpeg to exit gracefully...") ffmpeg_process.communicate(timeout=30) except sp.TimeoutExpired: print("FFmpeg didnt exit. Force killing...") ffmpeg_process.kill() ffmpeg_process.communicate() ffmpeg_process = None print("Creating ffmpeg process...") print(" ".join(ffmpeg_cmd)) process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, stdin = sp.DEVNULL, bufsize=frame_size*10, start_new_session=True) return process def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: FrameManager, frame_queue, take_frame: int, fps:EventsPerSecond, skipped_fps: EventsPerSecond, stop_event: mp.Event, detection_frame: mp.Value, current_frame: mp.Value): frame_num = 0 last_frame = 0 frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2] skipped_fps.start() while True: if stop_event.is_set(): print(f"{camera_name}: stop event set. exiting capture thread...") break frame_bytes = ffmpeg_process.stdout.read(frame_size) current_frame.value = datetime.datetime.now().timestamp() if len(frame_bytes) == 0: print(f"{camera_name}: ffmpeg didnt return a frame. something is wrong.") if ffmpeg_process.poll() != None: print(f"{camera_name}: ffmpeg process is not running. exiting capture thread...") break else: continue fps.update() frame_num += 1 if (frame_num % take_frame) != 0: skipped_fps.update() continue # if the detection process is more than 1 second behind, skip this frame if detection_frame.value > 0.0 and (last_frame - detection_frame.value) > 1: skipped_fps.update() continue # put the frame in the frame manager frame_manager.put(f"{camera_name}{current_frame.value}", np .frombuffer(frame_bytes, np.uint8) .reshape(frame_shape) ) # add to the queue frame_queue.put(current_frame.value) last_frame = current_frame.value class CameraCapture(threading.Thread): def __init__(self, name, ffmpeg_process, frame_shape, frame_queue, take_frame, fps, detection_frame, stop_event): threading.Thread.__init__(self) self.name = name self.frame_shape = frame_shape self.frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2] self.frame_queue = frame_queue self.take_frame = take_frame self.fps = fps self.skipped_fps = EventsPerSecond() self.plasma_client = PlasmaFrameManager(stop_event) self.ffmpeg_process = ffmpeg_process self.current_frame = mp.Value('d', 0.0) self.last_frame = 0 self.detection_frame = detection_frame self.stop_event = stop_event def run(self): self.skipped_fps.start() capture_frames(self.ffmpeg_process, self.name, self.frame_shape, self.plasma_client, self.frame_queue, self.take_frame, self.fps, self.skipped_fps, self.stop_event, self.detection_frame, self.current_frame) def track_camera(name, config, frame_queue, frame_shape, detection_queue, detected_objects_queue, fps, detection_fps, read_start, detection_frame, stop_event): print(f"Starting process for {name}: {os.getpid()}") listen() detection_frame.value = 0.0 # Merge the tracked object config with the global config camera_objects_config = config.get('objects', {}) objects_to_track = camera_objects_config.get('track', []) object_filters = camera_objects_config.get('filters', {}) # load in the mask for object detection if 'mask' in config: if config['mask'].startswith('base64,'): img = base64.b64decode(config['mask'][7:]) npimg = np.fromstring(img, dtype=np.uint8) mask = cv2.imdecode(npimg, cv2.IMREAD_GRAYSCALE) else: mask = cv2.imread("/config/{}".format(config['mask']), cv2.IMREAD_GRAYSCALE) else: mask = None if mask is None or mask.size == 0: mask = np.zeros((frame_shape[0], frame_shape[1]), np.uint8) mask[:] = 255 motion_detector = MotionDetector(frame_shape, mask, resize_factor=6) object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue) object_tracker = ObjectTracker(10) plasma_client = PlasmaFrameManager() process_frames(name, frame_queue, frame_shape, plasma_client, motion_detector, object_detector, object_tracker, detected_objects_queue, fps, detection_fps, detection_frame, objects_to_track, object_filters, mask, stop_event) print(f"{name}: exiting subprocess") def reduce_boxes(boxes): if len(boxes) == 0: return [] reduced_boxes = cv2.groupRectangles([list(b) for b in itertools.chain(boxes, boxes)], 1, 0.2)[0] return [tuple(b) for b in reduced_boxes] def detect(object_detector, frame, region, objects_to_track, object_filters, mask): tensor_input = create_tensor_input(frame, region) detections = [] region_detections = object_detector.detect(tensor_input) for d in region_detections: box = d[2] size = region[2]-region[0] x_min = int((box[1] * size) + region[0]) y_min = int((box[0] * size) + region[1]) x_max = int((box[3] * size) + region[0]) y_max = int((box[2] * size) + region[1]) det = (d[0], d[1], (x_min, y_min, x_max, y_max), (x_max-x_min)*(y_max-y_min), region) # apply object filters if filtered(det, objects_to_track, object_filters, mask): continue detections.append(det) return detections def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, frame_manager: FrameManager, motion_detector: MotionDetector, object_detector: RemoteObjectDetector, object_tracker: ObjectTracker, detected_objects_queue: mp.Queue, fps: mp.Value, detection_fps: mp.Value, current_frame_time: mp.Value, objects_to_track: List[str], object_filters: Dict, mask, stop_event: mp.Event, exit_on_empty: bool = False): fps_tracker = EventsPerSecond() fps_tracker.start() while True: if stop_event.is_set() or (exit_on_empty and frame_queue.empty()): print(f"Exiting track_objects...") break try: frame_time = frame_queue.get(True, 10) except queue.Empty: continue current_frame_time.value = frame_time frame = frame_manager.get(f"{camera_name}{frame_time}") fps_tracker.update() fps.value = fps_tracker.eps() # look for motion motion_boxes = motion_detector.detect(frame) tracked_object_boxes = [obj['box'] for obj in object_tracker.tracked_objects.values()] # combine motion boxes with known locations of existing objects combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes) # compute regions regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2) for a in combined_boxes] # combine overlapping regions combined_regions = reduce_boxes(regions) # re-compute regions regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.0) for a in combined_regions] # resize regions and detect detections = [] for region in regions: detections.extend(detect(object_detector, frame, region, objects_to_track, object_filters, mask)) ######### # merge objects, check for clipped objects and look again up to 4 times ######### refining = True refine_count = 0 while refining and refine_count < 4: refining = False # group by name detected_object_groups = defaultdict(lambda: []) for detection in detections: detected_object_groups[detection[0]].append(detection) selected_objects = [] for group in detected_object_groups.values(): # apply non-maxima suppression to suppress weak, overlapping bounding boxes boxes = [(o[2][0], o[2][1], o[2][2]-o[2][0], o[2][3]-o[2][1]) for o in group] confidences = [o[1] for o in group] idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) for index in idxs: obj = group[index[0]] if clipped(obj, frame_shape): box = obj[2] # calculate a new region that will hopefully get the entire object region = calculate_region(frame_shape, box[0], box[1], box[2], box[3]) selected_objects.extend(detect(object_detector, frame, region, objects_to_track, object_filters, mask)) refining = True else: selected_objects.append(obj) # set the detections list to only include top, complete objects # and new detections detections = selected_objects if refining: refine_count += 1 # now that we have refined our detections, we need to track objects object_tracker.match_and_update(frame_time, detections) # add to the queue detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects)) detection_fps.value = object_detector.fps.eps()