#!/bin/bash set -euxo pipefail CUDA_HOME=/usr/local/cuda LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64 OUTPUT_FOLDER=/tensorrt_models echo "Generating the following TRT Models: ${YOLO_MODELS:="yolov4-tiny-288,yolov4-tiny-416,yolov7-tiny-416"}" # Create output folder mkdir -p ${OUTPUT_FOLDER} # Install packages pip install --upgrade pip && pip install onnx==1.9.0 protobuf==3.20.3 # Clone tensorrt_demos repo git clone --depth 1 https://github.com/yeahme49/tensorrt_demos.git /tensorrt_demos # Build libyolo cd /tensorrt_demos/plugins && make all cp libyolo_layer.so ${OUTPUT_FOLDER}/libyolo_layer.so # Download yolo weights cd /tensorrt_demos/yolo && ./download_yolo.sh # Build trt engine cd /tensorrt_demos/yolo for model in ${YOLO_MODELS//,/ } do python3 yolo_to_onnx.py -m ${model} python3 onnx_to_tensorrt.py -m ${model} cp /tensorrt_demos/yolo/${model}.trt ${OUTPUT_FOLDER}/${model}.trt; done # Download Labelmap wget -q https://github.com/openvinotoolkit/open_model_zoo/raw/master/data/dataset_classes/coco_91cl.txt -O ${OUTPUT_FOLDER}/coco_91cl.txt