import os import time import datetime import cv2 import threading import ctypes import multiprocessing as mp import subprocess as sp import numpy as np from . util import tonumpyarray, draw_box_with_label from . object_detection import FramePrepper from . objects import ObjectCleaner, BestPersonFrame from . mqtt import MqttObjectPublisher # fetch the frames as fast a possible and store current frame in a shared memory array def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_shape, rtsp_url): # convert shared memory array into numpy and shape into image array arr = tonumpyarray(shared_arr).reshape(frame_shape) frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2] ffmpeg_cmd = ['ffmpeg', '-hide_banner', '-loglevel', 'panic', '-avoid_negative_ts', 'make_zero', '-fflags', 'nobuffer', '-flags', 'low_delay', '-strict', 'experimental', '-fflags', '+genpts', '-rtsp_transport', 'tcp', '-stimeout', '5000000', '-use_wallclock_as_timestamps', '1', '-i', rtsp_url, '-f', 'rawvideo', '-pix_fmt', 'rgb24', 'pipe:'] pipe = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size) while True: raw_image = pipe.stdout.read(frame_size) frame = ( np .frombuffer(raw_image, np.uint8) .reshape(frame_shape) ) with frame_lock: shared_frame_time.value = datetime.datetime.now().timestamp() arr[:] = frame # Notify with the condition that a new frame is ready with frame_ready: frame_ready.notify_all() pipe.stdout.flush() # Stores 2 seconds worth of frames when motion is detected so they can be used for other threads class FrameTracker(threading.Thread): def __init__(self, shared_frame, frame_time, frame_ready, frame_lock, recent_frames): threading.Thread.__init__(self) self.shared_frame = shared_frame self.frame_time = frame_time self.frame_ready = frame_ready self.frame_lock = frame_lock self.recent_frames = recent_frames def run(self): frame_time = 0.0 while True: now = datetime.datetime.now().timestamp() # wait for a frame with self.frame_ready: # if there isnt a frame ready for processing or it is old, wait for a signal if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5: self.frame_ready.wait() # lock and make a copy of the frame with self.frame_lock: frame = self.shared_frame.copy() frame_time = self.frame_time.value # add the frame to recent frames self.recent_frames[frame_time] = frame # delete any old frames stored_frame_times = list(self.recent_frames.keys()) for k in stored_frame_times: if (now - k) > 2: del self.recent_frames[k] def get_frame_shape(rtsp_url): # capture a single frame and check the frame shape so the correct array # size can be allocated in memory video = cv2.VideoCapture(rtsp_url) ret, frame = video.read() frame_shape = frame.shape video.release() return frame_shape def get_rtsp_url(rtsp_config): if (rtsp_config['password'].startswith('$')): rtsp_config['password'] = os.getenv(rtsp_config['password'][1:]) return 'rtsp://{}:{}@{}:{}{}'.format(rtsp_config['user'], rtsp_config['password'], rtsp_config['host'], rtsp_config['port'], rtsp_config['path']) class CameraWatchdog(threading.Thread): def __init__(self, camera): threading.Thread.__init__(self) self.camera = camera def run(self): while True: # wait a bit before checking time.sleep(60) if (datetime.datetime.now().timestamp() - self.camera.shared_frame_time.value) > 2: print("last frame is more than 2 seconds old, restarting camera capture...") self.camera.start_or_restart_capture() time.sleep(5) class Camera: def __init__(self, name, config, prepped_frame_queue, mqtt_client, mqtt_prefix): self.name = name self.config = config self.detected_objects = [] self.recent_frames = {} self.rtsp_url = get_rtsp_url(self.config['rtsp']) self.regions = self.config['regions'] self.frame_shape = get_frame_shape(self.rtsp_url) self.mqtt_client = mqtt_client self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name) # compute the flattened array length from the shape of the frame flat_array_length = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2] # create shared array for storing the full frame image data self.shared_frame_array = mp.Array(ctypes.c_uint8, flat_array_length) # create shared value for storing the frame_time self.shared_frame_time = mp.Value('d', 0.0) # Lock to control access to the frame self.frame_lock = mp.Lock() # Condition for notifying that a new frame is ready self.frame_ready = mp.Condition() # Condition for notifying that objects were parsed self.objects_parsed = mp.Condition() # shape current frame so it can be treated as a numpy image self.shared_frame_np = tonumpyarray(self.shared_frame_array).reshape(self.frame_shape) self.capture_process = None # for each region, create a separate thread to resize the region and prep for detection self.detection_prep_threads = [] for region in self.config['regions']: # set a default threshold of 0.5 if not defined if not 'threshold' in region: region['threshold'] = 0.5 if not isinstance(region['threshold'], float): print('Threshold is not a float. Setting to 0.5 default.') region['threshold'] = 0.5 self.detection_prep_threads.append(FramePrepper( self.name, self.shared_frame_np, self.shared_frame_time, self.frame_ready, self.frame_lock, region['size'], region['x_offset'], region['y_offset'], region['threshold'], prepped_frame_queue )) # start a thread to store recent motion frames for processing self.frame_tracker = FrameTracker(self.shared_frame_np, self.shared_frame_time, self.frame_ready, self.frame_lock, self.recent_frames) self.frame_tracker.start() # start a thread to store the highest scoring recent person frame self.best_person_frame = BestPersonFrame(self.objects_parsed, self.recent_frames, self.detected_objects) self.best_person_frame.start() # start a thread to expire objects from the detected objects list self.object_cleaner = ObjectCleaner(self.objects_parsed, self.detected_objects) self.object_cleaner.start() # start a thread to publish object scores (currently only person) mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects) mqtt_publisher.start() # create a watchdog thread for capture process self.watchdog = CameraWatchdog(self) # load in the mask for person detection if 'mask' in self.config: self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE) else: self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8) self.mask[:] = 255 def start_or_restart_capture(self): if not self.capture_process is None: print("Terminating the existing capture process...") self.capture_process.terminate() del self.capture_process self.capture_process = None # create the process to capture frames from the RTSP stream and store in a shared array print("Creating a new capture process...") self.capture_process = mp.Process(target=fetch_frames, args=(self.shared_frame_array, self.shared_frame_time, self.frame_lock, self.frame_ready, self.frame_shape, self.rtsp_url)) self.capture_process.daemon = True print("Starting a new capture process...") self.capture_process.start() def start(self): self.start_or_restart_capture() # start the object detection prep threads for detection_prep_thread in self.detection_prep_threads: detection_prep_thread.start() self.watchdog.start() def join(self): self.capture_process.join() def get_capture_pid(self): return self.capture_process.pid def add_objects(self, objects): if len(objects) == 0: return for obj in objects: if obj['name'] == 'person': person_area = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin']) # find the matching region region = None for r in self.regions: if ( obj['xmin'] >= r['x_offset'] and obj['ymin'] >= r['y_offset'] and obj['xmax'] <= r['x_offset']+r['size'] and obj['ymax'] <= r['y_offset']+r['size'] ): region = r break # if the min person area is larger than the # detected person, don't add it to detected objects if region and region['min_person_area'] > person_area: continue # compute the coordinates of the person and make sure # the location isnt outide the bounds of the image (can happen from rounding) y_location = min(int(obj['ymax']), len(self.mask)-1) x_location = min(int((obj['xmax']-obj['xmin'])/2.0), len(self.mask[0])-1) # if the person is in a masked location, continue if self.mask[y_location][x_location] == [0]: continue self.detected_objects.append(obj) with self.objects_parsed: self.objects_parsed.notify_all() def get_best_person(self): return self.best_person_frame.best_frame def get_current_frame_with_objects(self): # make a copy of the current detected objects detected_objects = self.detected_objects.copy() # lock and make a copy of the current frame with self.frame_lock: frame = self.shared_frame_np.copy() # draw the bounding boxes on the screen for obj in detected_objects: label = "{}: {}%".format(obj['name'],int(obj['score']*100)) draw_box_with_label(frame, obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'], label) for region in self.regions: color = (255,255,255) cv2.rectangle(frame, (region['x_offset'], region['y_offset']), (region['x_offset']+region['size'], region['y_offset']+region['size']), color, 2) # convert to BGR frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) return frame