import logging import numpy as np from frigate.detectors.detection_api import DetectionApi import tflite_runtime.interpreter as tflite logger = logging.getLogger(__name__) class CpuTfl(DetectionApi): def __init__(self, det_device=None, model_config=None, num_threads=3): self.interpreter = tflite.Interpreter( model_path=model_config.path or "/cpu_model.tflite", num_threads=num_threads ) self.interpreter.allocate_tensors() self.tensor_input_details = self.interpreter.get_input_details() self.tensor_output_details = self.interpreter.get_output_details() def detect_raw(self, tensor_input): self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input) self.interpreter.invoke() boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0] class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0] scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0] count = int( self.interpreter.tensor(self.tensor_output_details[3]["index"])()[0] ) detections = np.zeros((20, 6), np.float32) for i in range(count): if scores[i] < 0.4 or i == 20: break detections[i] = [ class_ids[i], float(scores[i]), boxes[i][0], boxes[i][1], boxes[i][2], boxes[i][3], ] return detections