import hashlib import json import logging import os from enum import Enum from typing import Dict, Optional, Tuple import matplotlib.pyplot as plt import requests from pydantic import BaseModel, ConfigDict, Field from pydantic.fields import PrivateAttr from frigate.plus import PlusApi from frigate.util.builtin import load_labels logger = logging.getLogger(__name__) class PixelFormatEnum(str, Enum): rgb = "rgb" bgr = "bgr" yuv = "yuv" class InputTensorEnum(str, Enum): nchw = "nchw" nhwc = "nhwc" class ModelTypeEnum(str, Enum): ssd = "ssd" yolox = "yolox" yolonas = "yolonas" class ModelConfig(BaseModel): path: Optional[str] = Field(None, title="Custom Object detection model path.") labelmap_path: Optional[str] = Field( None, title="Label map for custom object detector." ) width: int = Field(default=320, title="Object detection model input width.") height: int = Field(default=320, title="Object detection model input height.") labelmap: Dict[int, str] = Field( default_factory=dict, title="Labelmap customization." ) input_tensor: InputTensorEnum = Field( default=InputTensorEnum.nhwc, title="Model Input Tensor Shape" ) input_pixel_format: PixelFormatEnum = Field( default=PixelFormatEnum.rgb, title="Model Input Pixel Color Format" ) model_type: ModelTypeEnum = Field( default=ModelTypeEnum.ssd, title="Object Detection Model Type" ) _merged_labelmap: Optional[Dict[int, str]] = PrivateAttr() _colormap: Dict[int, Tuple[int, int, int]] = PrivateAttr() _model_hash: str = PrivateAttr() @property def merged_labelmap(self) -> Dict[int, str]: return self._merged_labelmap @property def colormap(self) -> Dict[int, Tuple[int, int, int]]: return self._colormap @property def model_hash(self) -> str: return self._model_hash def __init__(self, **config): super().__init__(**config) self._merged_labelmap = { **load_labels(config.get("labelmap_path", "/labelmap.txt")), **config.get("labelmap", {}), } self._colormap = {} def check_and_load_plus_model( self, plus_api: PlusApi, detector: str = None ) -> None: if not self.path or not self.path.startswith("plus://"): return model_id = self.path[7:] self.path = f"/config/model_cache/{model_id}" model_info_path = f"{self.path}.json" # download the model if it doesn't exist if not os.path.isfile(self.path): download_url = plus_api.get_model_download_url(model_id) r = requests.get(download_url) with open(self.path, "wb") as f: f.write(r.content) # download the model info if it doesn't exist if not os.path.isfile(model_info_path): model_info = plus_api.get_model_info(model_id) with open(model_info_path, "w") as f: json.dump(model_info, f) else: with open(model_info_path, "r") as f: model_info = json.load(f) if detector and detector not in model_info["supportedDetectors"]: raise ValueError(f"Model does not support detector type of {detector}") self.width = model_info["width"] self.height = model_info["height"] self.input_tensor = model_info["inputShape"] self.input_pixel_format = model_info["pixelFormat"] self.model_type = model_info["type"] self._merged_labelmap = { **{int(key): val for key, val in model_info["labelMap"].items()}, **self.labelmap, } def compute_model_hash(self) -> None: if not self.path or not os.path.exists(self.path): self._model_hash = hashlib.md5(b"unknown").hexdigest() else: with open(self.path, "rb") as f: file_hash = hashlib.md5() while chunk := f.read(8192): file_hash.update(chunk) self._model_hash = file_hash.hexdigest() def create_colormap(self, enabled_labels: set[str]) -> None: """Get a list of colors for enabled labels.""" cmap = plt.cm.get_cmap("tab10", len(enabled_labels)) for key, val in enumerate(enabled_labels): self._colormap[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3]) model_config = ConfigDict(extra="forbid", protected_namespaces=()) class BaseDetectorConfig(BaseModel): # the type field must be defined in all subclasses type: str = Field(default="cpu", title="Detector Type") model: Optional[ModelConfig] = Field( default=None, title="Detector specific model configuration." ) model_config = ConfigDict( extra="allow", arbitrary_types_allowed=True, protected_namespaces=() )