import datetime import logging import multiprocessing as mp import os import queue import random import signal import subprocess as sp import threading import time from collections import defaultdict import cv2 import numpy as np from setproctitle import setproctitle from frigate.config import CameraConfig, DetectConfig, PixelFormatEnum from frigate.const import CACHE_DIR from frigate.log import LogPipe from frigate.motion import MotionDetector from frigate.object_detection import RemoteObjectDetector from frigate.track import ObjectTracker from frigate.track.norfair_tracker import NorfairTracker from frigate.util import ( EventsPerSecond, FrameManager, SharedMemoryFrameManager, area, calculate_region, clipped, intersection, intersection_over_union, listen, yuv_region_2_bgr, yuv_region_2_rgb, yuv_region_2_yuv, ) logger = logging.getLogger(__name__) def filtered(obj, objects_to_track, object_filters): object_name = obj[0] object_score = obj[1] object_box = obj[2] object_area = obj[3] object_ratio = obj[4] if object_name not in objects_to_track: return True if object_name in object_filters: obj_settings = object_filters[object_name] # if the min area is larger than the # detected object, don't add it to detected objects if obj_settings.min_area > object_area: return True # if the detected object is larger than the # max area, don't add it to detected objects if obj_settings.max_area < object_area: return True # if the score is lower than the min_score, skip if obj_settings.min_score > object_score: return True # if the object is not proportionally wide enough if obj_settings.min_ratio > object_ratio: return True # if the object is proportionally too wide if obj_settings.max_ratio < object_ratio: return True if obj_settings.mask is not None: # compute the coordinates of the object and make sure # the location isn't outside the bounds of the image (can happen from rounding) object_xmin = object_box[0] object_xmax = object_box[2] object_ymax = object_box[3] y_location = min(int(object_ymax), len(obj_settings.mask) - 1) x_location = min( int((object_xmax + object_xmin) / 2.0), len(obj_settings.mask[0]) - 1, ) # if the object is in a masked location, don't add it to detected objects if obj_settings.mask[y_location][x_location] == 0: return True return False def create_tensor_input(frame, model_config, region): if model_config.input_pixel_format == PixelFormatEnum.rgb: cropped_frame = yuv_region_2_rgb(frame, region) elif model_config.input_pixel_format == PixelFormatEnum.bgr: cropped_frame = yuv_region_2_bgr(frame, region) else: cropped_frame = yuv_region_2_yuv(frame, region) # Resize if needed if cropped_frame.shape != (model_config.height, model_config.width, 3): cropped_frame = cv2.resize( cropped_frame, dsize=(model_config.width, model_config.height), interpolation=cv2.INTER_LINEAR, ) # Expand dimensions since the model expects images to have shape: [1, height, width, 3] return np.expand_dims(cropped_frame, axis=0) def stop_ffmpeg(ffmpeg_process, logger): logger.info("Terminating the existing ffmpeg process...") ffmpeg_process.terminate() try: logger.info("Waiting for ffmpeg to exit gracefully...") ffmpeg_process.communicate(timeout=30) except sp.TimeoutExpired: logger.info("FFmpeg didnt exit. Force killing...") ffmpeg_process.kill() ffmpeg_process.communicate() ffmpeg_process = None def start_or_restart_ffmpeg( ffmpeg_cmd, logger, logpipe: LogPipe, frame_size=None, ffmpeg_process=None ): if ffmpeg_process is not None: stop_ffmpeg(ffmpeg_process, logger) if frame_size is None: process = sp.Popen( ffmpeg_cmd, stdout=sp.DEVNULL, stderr=logpipe, stdin=sp.DEVNULL, start_new_session=True, ) else: process = sp.Popen( ffmpeg_cmd, stdout=sp.PIPE, stderr=logpipe, stdin=sp.DEVNULL, bufsize=frame_size * 10, start_new_session=True, ) return process def capture_frames( ffmpeg_process, camera_name, frame_shape, frame_manager: FrameManager, frame_queue, fps: mp.Value, skipped_fps: mp.Value, current_frame: mp.Value, stop_event: mp.Event, ): frame_size = frame_shape[0] * frame_shape[1] frame_rate = EventsPerSecond() frame_rate.start() skipped_eps = EventsPerSecond() skipped_eps.start() while True: fps.value = frame_rate.eps() skipped_eps.eps() current_frame.value = datetime.datetime.now().timestamp() frame_name = f"{camera_name}{current_frame.value}" frame_buffer = frame_manager.create(frame_name, frame_size) try: frame_buffer[:] = ffmpeg_process.stdout.read(frame_size) except Exception: # shutdown has been initiated if stop_event.is_set(): break logger.error(f"{camera_name}: Unable to read frames from ffmpeg process.") if ffmpeg_process.poll() is not None: logger.error( f"{camera_name}: ffmpeg process is not running. exiting capture thread..." ) frame_manager.delete(frame_name) break continue frame_rate.update() # if the queue is full, skip this frame if frame_queue.full(): skipped_eps.update() frame_manager.delete(frame_name) continue # close the frame frame_manager.close(frame_name) # add to the queue frame_queue.put(current_frame.value) class CameraWatchdog(threading.Thread): def __init__( self, camera_name, config: CameraConfig, frame_queue, camera_fps, ffmpeg_pid, stop_event, ): threading.Thread.__init__(self) self.logger = logging.getLogger(f"watchdog.{camera_name}") self.camera_name = camera_name self.config = config self.capture_thread = None self.ffmpeg_detect_process = None self.logpipe = LogPipe(f"ffmpeg.{self.camera_name}.detect") self.ffmpeg_other_processes: list[dict[str, any]] = [] self.camera_fps = camera_fps self.ffmpeg_pid = ffmpeg_pid self.frame_queue = frame_queue self.frame_shape = self.config.frame_shape_yuv self.frame_size = self.frame_shape[0] * self.frame_shape[1] self.stop_event = stop_event def run(self): self.start_ffmpeg_detect() for c in self.config.ffmpeg_cmds: if "detect" in c["roles"]: continue logpipe = LogPipe( f"ffmpeg.{self.camera_name}.{'_'.join(sorted(c['roles']))}" ) self.ffmpeg_other_processes.append( { "cmd": c["cmd"], "roles": c["roles"], "logpipe": logpipe, "process": start_or_restart_ffmpeg(c["cmd"], self.logger, logpipe), } ) time.sleep(10) while not self.stop_event.wait(10): now = datetime.datetime.now().timestamp() if not self.capture_thread.is_alive(): self.camera_fps.value = 0 self.logger.error( f"Ffmpeg process crashed unexpectedly for {self.camera_name}." ) self.logger.error( "The following ffmpeg logs include the last 100 lines prior to exit." ) self.logpipe.dump() self.start_ffmpeg_detect() elif now - self.capture_thread.current_frame.value > 20: self.camera_fps.value = 0 self.logger.info( f"No frames received from {self.camera_name} in 20 seconds. Exiting ffmpeg..." ) self.ffmpeg_detect_process.terminate() try: self.logger.info("Waiting for ffmpeg to exit gracefully...") self.ffmpeg_detect_process.communicate(timeout=30) except sp.TimeoutExpired: self.logger.info("FFmpeg did not exit. Force killing...") self.ffmpeg_detect_process.kill() self.ffmpeg_detect_process.communicate() elif self.camera_fps.value >= (self.config.detect.fps + 10): self.camera_fps.value = 0 self.logger.info( f"{self.camera_name} exceeded fps limit. Exiting ffmpeg..." ) self.ffmpeg_detect_process.terminate() try: self.logger.info("Waiting for ffmpeg to exit gracefully...") self.ffmpeg_detect_process.communicate(timeout=30) except sp.TimeoutExpired: self.logger.info("FFmpeg did not exit. Force killing...") self.ffmpeg_detect_process.kill() self.ffmpeg_detect_process.communicate() for p in self.ffmpeg_other_processes: poll = p["process"].poll() if self.config.record.enabled and "record" in p["roles"]: latest_segment_time = self.get_latest_segment_timestamp( p.get( "latest_segment_time", datetime.datetime.now().timestamp() ) ) if datetime.datetime.now().timestamp() > ( latest_segment_time + 120 ): self.logger.error( f"No new recording segments were created for {self.camera_name} in the last 120s. restarting the ffmpeg record process..." ) p["process"] = start_or_restart_ffmpeg( p["cmd"], self.logger, p["logpipe"], ffmpeg_process=p["process"], ) continue else: p["latest_segment_time"] = latest_segment_time if poll is None: continue p["logpipe"].dump() p["process"] = start_or_restart_ffmpeg( p["cmd"], self.logger, p["logpipe"], ffmpeg_process=p["process"] ) stop_ffmpeg(self.ffmpeg_detect_process, self.logger) for p in self.ffmpeg_other_processes: stop_ffmpeg(p["process"], self.logger) p["logpipe"].close() self.logpipe.close() def start_ffmpeg_detect(self): ffmpeg_cmd = [ c["cmd"] for c in self.config.ffmpeg_cmds if "detect" in c["roles"] ][0] self.ffmpeg_detect_process = start_or_restart_ffmpeg( ffmpeg_cmd, self.logger, self.logpipe, self.frame_size ) self.ffmpeg_pid.value = self.ffmpeg_detect_process.pid self.capture_thread = CameraCapture( self.camera_name, self.ffmpeg_detect_process, self.frame_shape, self.frame_queue, self.camera_fps, self.stop_event, ) self.capture_thread.start() def get_latest_segment_timestamp(self, latest_timestamp) -> int: """Checks if ffmpeg is still writing recording segments to cache.""" cache_files = sorted( [ d for d in os.listdir(CACHE_DIR) if os.path.isfile(os.path.join(CACHE_DIR, d)) and d.endswith(".mp4") and not d.startswith("clip_") ] ) newest_segment_timestamp = latest_timestamp for file in cache_files: if self.camera_name in file: basename = os.path.splitext(file)[0] _, date = basename.rsplit("-", maxsplit=1) ts = datetime.datetime.strptime(date, "%Y%m%d%H%M%S").timestamp() if ts > newest_segment_timestamp: newest_segment_timestamp = ts return newest_segment_timestamp class CameraCapture(threading.Thread): def __init__( self, camera_name, ffmpeg_process, frame_shape, frame_queue, fps, stop_event ): threading.Thread.__init__(self) self.name = f"capture:{camera_name}" self.camera_name = camera_name self.frame_shape = frame_shape self.frame_queue = frame_queue self.fps = fps self.stop_event = stop_event self.skipped_fps = EventsPerSecond() self.frame_manager = SharedMemoryFrameManager() self.ffmpeg_process = ffmpeg_process self.current_frame = mp.Value("d", 0.0) self.last_frame = 0 def run(self): self.skipped_fps.start() capture_frames( self.ffmpeg_process, self.camera_name, self.frame_shape, self.frame_manager, self.frame_queue, self.fps, self.skipped_fps, self.current_frame, self.stop_event, ) def capture_camera(name, config: CameraConfig, process_info): stop_event = mp.Event() def receiveSignal(signalNumber, frame): stop_event.set() signal.signal(signal.SIGTERM, receiveSignal) signal.signal(signal.SIGINT, receiveSignal) threading.current_thread().name = f"capture:{name}" setproctitle(f"frigate.capture:{name}") frame_queue = process_info["frame_queue"] camera_watchdog = CameraWatchdog( name, config, frame_queue, process_info["camera_fps"], process_info["ffmpeg_pid"], stop_event, ) camera_watchdog.start() camera_watchdog.join() def track_camera( name, config: CameraConfig, model_config, labelmap, detection_queue, result_connection, detected_objects_queue, process_info, ): stop_event = mp.Event() def receiveSignal(signalNumber, frame): stop_event.set() signal.signal(signal.SIGTERM, receiveSignal) signal.signal(signal.SIGINT, receiveSignal) threading.current_thread().name = f"process:{name}" setproctitle(f"frigate.process:{name}") listen() frame_queue = process_info["frame_queue"] detection_enabled = process_info["detection_enabled"] motion_enabled = process_info["motion_enabled"] improve_contrast_enabled = process_info["improve_contrast_enabled"] motion_threshold = process_info["motion_threshold"] motion_contour_area = process_info["motion_contour_area"] frame_shape = config.frame_shape objects_to_track = config.objects.track object_filters = config.objects.filters motion_detector = MotionDetector( frame_shape, config.motion, improve_contrast_enabled, motion_threshold, motion_contour_area, ) object_detector = RemoteObjectDetector( name, labelmap, detection_queue, result_connection, model_config, stop_event ) object_tracker = NorfairTracker(config.detect) frame_manager = SharedMemoryFrameManager() process_frames( name, frame_queue, frame_shape, model_config, config.detect, frame_manager, motion_detector, object_detector, object_tracker, detected_objects_queue, process_info, objects_to_track, object_filters, detection_enabled, motion_enabled, stop_event, ) logger.info(f"{name}: exiting subprocess") def box_overlaps(b1, b2): if b1[2] < b2[0] or b1[0] > b2[2] or b1[1] > b2[3] or b1[3] < b2[1]: return False return True def reduce_boxes(boxes, iou_threshold=0.0): clusters = [] for box in boxes: matched = 0 for cluster in clusters: if intersection_over_union(box, cluster) > iou_threshold: matched = 1 cluster[0] = min(cluster[0], box[0]) cluster[1] = min(cluster[1], box[1]) cluster[2] = max(cluster[2], box[2]) cluster[3] = max(cluster[3], box[3]) if not matched: clusters.append(list(box)) return [tuple(c) for c in clusters] def intersects_any(box_a, boxes): for box in boxes: if box_overlaps(box_a, box): return True return False def detect( detect_config: DetectConfig, object_detector, frame, model_config, region, objects_to_track, object_filters, ): tensor_input = create_tensor_input(frame, model_config, region) detections = [] region_detections = object_detector.detect(tensor_input) for d in region_detections: box = d[2] size = region[2] - region[0] x_min = int(max(0, (box[1] * size) + region[0])) y_min = int(max(0, (box[0] * size) + region[1])) x_max = int(min(detect_config.width - 1, (box[3] * size) + region[0])) y_max = int(min(detect_config.height - 1, (box[2] * size) + region[1])) # ignore objects that were detected outside the frame if (x_min >= detect_config.width - 1) or (y_min >= detect_config.height - 1): continue width = x_max - x_min height = y_max - y_min area = width * height ratio = width / height det = ( d[0], d[1], (x_min, y_min, x_max, y_max), area, ratio, region, ) # apply object filters if filtered(det, objects_to_track, object_filters): continue detections.append(det) return detections def process_frames( camera_name: str, frame_queue: mp.Queue, frame_shape, model_config, detect_config: DetectConfig, frame_manager: FrameManager, motion_detector: MotionDetector, object_detector: RemoteObjectDetector, object_tracker: ObjectTracker, detected_objects_queue: mp.Queue, process_info: dict, objects_to_track: list[str], object_filters, detection_enabled: mp.Value, motion_enabled: mp.Value, stop_event, exit_on_empty: bool = False, ): fps = process_info["process_fps"] detection_fps = process_info["detection_fps"] current_frame_time = process_info["detection_frame"] fps_tracker = EventsPerSecond() fps_tracker.start() startup_scan_counter = 0 while not stop_event.is_set(): if exit_on_empty and frame_queue.empty(): logger.info("Exiting track_objects...") break try: frame_time = frame_queue.get(True, 1) except queue.Empty: continue current_frame_time.value = frame_time frame = frame_manager.get( f"{camera_name}{frame_time}", (frame_shape[0] * 3 // 2, frame_shape[1]) ) if frame is None: logger.info(f"{camera_name}: frame {frame_time} is not in memory store.") continue # look for motion if enabled motion_boxes = motion_detector.detect(frame) if motion_enabled.value else [] regions = [] # if detection is disabled if not detection_enabled.value: object_tracker.match_and_update(frame_time, []) else: # get stationary object ids # check every Nth frame for stationary objects # disappeared objects are not stationary # also check for overlapping motion boxes stationary_object_ids = [ obj["id"] for obj in object_tracker.tracked_objects.values() # if there hasn't been motion for 10 frames if obj["motionless_count"] >= 10 # and it isn't due for a periodic check and ( detect_config.stationary.interval == 0 or obj["motionless_count"] % detect_config.stationary.interval != 0 ) # and it hasn't disappeared and object_tracker.disappeared[obj["id"]] == 0 # and it doesn't overlap with any current motion boxes and not intersects_any(obj["box"], motion_boxes) ] # get tracked object boxes that aren't stationary tracked_object_boxes = [ obj["box"] for obj in object_tracker.tracked_objects.values() if obj["id"] not in stationary_object_ids ] # combine motion boxes with known locations of existing objects combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes) region_min_size = max(model_config.height, model_config.width) # compute regions regions = [ calculate_region( frame_shape, a[0], a[1], a[2], a[3], region_min_size, multiplier=random.uniform(1.2, 1.5), ) for a in combined_boxes ] # consolidate regions with heavy overlap regions = [ calculate_region( frame_shape, a[0], a[1], a[2], a[3], region_min_size, multiplier=1.0 ) for a in reduce_boxes(regions, 0.4) ] # if starting up, get the next startup scan region if startup_scan_counter < 9: ymin = int(frame_shape[0] / 3 * startup_scan_counter / 3) ymax = int(frame_shape[0] / 3 + ymin) xmin = int(frame_shape[1] / 3 * startup_scan_counter / 3) xmax = int(frame_shape[1] / 3 + xmin) regions.append( calculate_region( frame_shape, xmin, ymin, xmax, ymax, region_min_size, multiplier=1.2, ) ) startup_scan_counter += 1 # resize regions and detect # seed with stationary objects detections = [ ( obj["label"], obj["score"], obj["box"], obj["area"], obj["ratio"], obj["region"], ) for obj in object_tracker.tracked_objects.values() if obj["id"] in stationary_object_ids ] for region in regions: detections.extend( detect( detect_config, object_detector, frame, model_config, region, objects_to_track, object_filters, ) ) ######### # merge objects, check for clipped objects and look again up to 4 times ######### refining = len(regions) > 0 refine_count = 0 while refining and refine_count < 4: refining = False # group by name detected_object_groups = defaultdict(lambda: []) for detection in detections: detected_object_groups[detection[0]].append(detection) selected_objects = [] for group in detected_object_groups.values(): # apply non-maxima suppression to suppress weak, overlapping bounding boxes # o[2] is the box of the object: xmin, ymin, xmax, ymax # apply max/min to ensure values do not exceed the known frame size boxes = [ ( o[2][0], o[2][1], o[2][2] - o[2][0], o[2][3] - o[2][1], ) for o in group ] confidences = [o[1] for o in group] idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) for index in idxs: index = index if isinstance(index, np.int32) else index[0] obj = group[index] if clipped(obj, frame_shape): box = obj[2] # calculate a new region that will hopefully get the entire object region = calculate_region( frame_shape, box[0], box[1], box[2], box[3], region_min_size, ) regions.append(region) selected_objects.extend( detect( detect_config, object_detector, frame, model_config, region, objects_to_track, object_filters, ) ) refining = True else: selected_objects.append(obj) # set the detections list to only include top, complete objects # and new detections detections = selected_objects if refining: refine_count += 1 ## drop detections that overlap too much consolidated_detections = [] # if detection was run on this frame, consolidate if len(regions) > 0: # group by name detected_object_groups = defaultdict(lambda: []) for detection in detections: detected_object_groups[detection[0]].append(detection) # loop over detections grouped by label for group in detected_object_groups.values(): # if the group only has 1 item, skip if len(group) == 1: consolidated_detections.append(group[0]) continue # sort smallest to largest by area sorted_by_area = sorted(group, key=lambda g: g[3]) for current_detection_idx in range(0, len(sorted_by_area)): current_detection = sorted_by_area[current_detection_idx][2] overlap = 0 for to_check_idx in range( min(current_detection_idx + 1, len(sorted_by_area)), len(sorted_by_area), ): to_check = sorted_by_area[to_check_idx][2] # if 90% of smaller detection is inside of another detection, consolidate if ( area(intersection(current_detection, to_check)) / area(current_detection) > 0.9 ): overlap = 1 break if overlap == 0: consolidated_detections.append( sorted_by_area[current_detection_idx] ) # now that we have refined our detections, we need to track objects object_tracker.match_and_update(frame_time, consolidated_detections) # else, just update the frame times for the stationary objects else: object_tracker.update_frame_times(frame_time) # debug tracking by writing frames if False: bgr_frame = cv2.cvtColor( frame, cv2.COLOR_YUV2BGR_I420, ) object_tracker.debug_draw(bgr_frame, frame_time) cv2.imwrite( f"debug/frames/track-{'{:.6f}'.format(frame_time)}.jpg", bgr_frame ) # add to the queue if not full if detected_objects_queue.full(): frame_manager.delete(f"{camera_name}{frame_time}") continue else: fps_tracker.update() fps.value = fps_tracker.eps() detected_objects_queue.put( ( camera_name, frame_time, object_tracker.tracked_objects, motion_boxes, regions, ) ) detection_fps.value = object_detector.fps.eps() frame_manager.close(f"{camera_name}{frame_time}")