"""Facenet Embeddings.""" import logging import os import numpy as np from frigate.const import MODEL_CACHE_DIR from frigate.util.downloader import ModelDownloader from .base_embedding import BaseEmbedding from .runner import ONNXModelRunner logger = logging.getLogger(__name__) FACE_EMBEDDING_SIZE = 112 class ArcfaceEmbedding(BaseEmbedding): def __init__( self, device: str = "AUTO", ): super().__init__( model_name="facedet", model_file="arcface.onnx", download_urls={ "arcface.onnx": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/arcface.onnx", }, ) self.device = device self.download_path = os.path.join(MODEL_CACHE_DIR, self.model_name) self.tokenizer = None self.feature_extractor = None self.runner = None files_names = list(self.download_urls.keys()) if not all( os.path.exists(os.path.join(self.download_path, n)) for n in files_names ): logger.debug(f"starting model download for {self.model_name}") self.downloader = ModelDownloader( model_name=self.model_name, download_path=self.download_path, file_names=files_names, download_func=self._download_model, ) self.downloader.ensure_model_files() else: self.downloader = None self._load_model_and_utils() logger.debug(f"models are already downloaded for {self.model_name}") def _load_model_and_utils(self): if self.runner is None: if self.downloader: self.downloader.wait_for_download() self.runner = ONNXModelRunner( os.path.join(self.download_path, self.model_file), self.device, ) def _preprocess_inputs(self, raw_inputs): pil = self._process_image(raw_inputs[0]) # handle images larger than input size width, height = pil.size if width != FACE_EMBEDDING_SIZE or height != FACE_EMBEDDING_SIZE: if width > height: new_height = int(((height / width) * FACE_EMBEDDING_SIZE) // 4 * 4) pil = pil.resize((FACE_EMBEDDING_SIZE, new_height)) else: new_width = int(((width / height) * FACE_EMBEDDING_SIZE) // 4 * 4) pil = pil.resize((new_width, FACE_EMBEDDING_SIZE)) og = np.array(pil).astype(np.float32) # Image must be FACE_EMBEDDING_SIZExFACE_EMBEDDING_SIZE og_h, og_w, channels = og.shape frame = np.zeros( (FACE_EMBEDDING_SIZE, FACE_EMBEDDING_SIZE, channels), dtype=np.float32 ) # compute center offset x_center = (FACE_EMBEDDING_SIZE - og_w) // 2 y_center = (FACE_EMBEDDING_SIZE - og_h) // 2 # copy img image into center of result image frame[y_center : y_center + og_h, x_center : x_center + og_w] = og # run arcface normalization normalized_image = frame.astype(np.float32) / 255.0 frame = (normalized_image - 0.5) / 0.5 frame = np.transpose(frame, (2, 0, 1)) frame = np.expand_dims(frame, axis=0) return [{"data": frame}]