import unittest import cv2 import numpy as np from norfair.drawing.color import Palette from norfair.drawing.drawer import Drawer from frigate.video import ( get_cluster_boundary, get_cluster_candidates, get_cluster_region, ) def draw_box(frame, box, color=(255, 0, 0), thickness=2): cv2.rectangle( frame, (box[0], box[1]), (box[2], box[3]), color, thickness, ) def save_clusters_image(name, boxes, candidates, regions=[]): canvas = np.zeros((1000, 2000, 3), np.uint8) for cluster in candidates: color = Palette.choose_color(np.random.rand()) for b in cluster: box = boxes[b] draw_box(canvas, box, color, 2) # bottom right text_anchor = ( box[2], box[3], ) canvas = Drawer.text( canvas, str(b), position=text_anchor, size=None, color=(255, 255, 255), thickness=None, ) for r in regions: draw_box(canvas, r, (0, 255, 0), 2) cv2.imwrite( f"debug/frames/{name}.jpg", canvas, ) def save_cluster_boundary_image(name, boxes, bounding_boxes): canvas = np.zeros((1000, 2000, 3), np.uint8) color = Palette.choose_color(np.random.rand()) for box in boxes: draw_box(canvas, box, color, 2) for bound in bounding_boxes: draw_box(canvas, bound, (0, 255, 0), 2) cv2.imwrite( f"debug/frames/{name}.jpg", canvas, ) class TestConfig(unittest.TestCase): def setUp(self): self.frame_shape = (1000, 2000) self.min_region_size = 160 def test_cluster_candidates(self): boxes = [(100, 100, 200, 200), (202, 150, 252, 200), (900, 900, 950, 950)] cluster_candidates = get_cluster_candidates( self.frame_shape, self.min_region_size, boxes ) # save_clusters_image("cluster_candidates", boxes, cluster_candidates) assert len(cluster_candidates) == 2 def test_cluster_boundary(self): boxes = [(100, 100, 200, 200), (215, 215, 325, 325)] boundary_boxes = [ get_cluster_boundary(box, self.min_region_size) for box in boxes ] # save_cluster_boundary_image("bound", boxes, boundary_boxes) assert len(boundary_boxes) == 2 def test_cluster_regions(self): boxes = [(100, 100, 200, 200), (202, 150, 252, 200), (900, 900, 950, 950)] cluster_candidates = get_cluster_candidates( self.frame_shape, self.min_region_size, boxes ) regions = [ get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes) for candidate in cluster_candidates ] # save_clusters_image("regions", boxes, cluster_candidates, regions) assert len(regions) == 2 def test_box_too_small_for_cluster(self): boxes = [(100, 100, 600, 600), (655, 100, 700, 145)] cluster_candidates = get_cluster_candidates( self.frame_shape, self.min_region_size, boxes ) regions = [ get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes) for candidate in cluster_candidates ] save_clusters_image("too_small", boxes, cluster_candidates, regions) assert len(cluster_candidates) == 2 assert len(regions) == 2 def test_redundant_clusters(self): boxes = [(100, 100, 200, 200), (305, 305, 415, 415)] cluster_candidates = get_cluster_candidates( self.frame_shape, self.min_region_size, boxes ) regions = [ get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes) for candidate in cluster_candidates ] # save_clusters_image("redundant", boxes, cluster_candidates, regions) assert len(cluster_candidates) == 2 assert all([len(c) == 1 for c in cluster_candidates]) assert len(regions) == 2 def test_combine_boxes(self): boxes = [ (460, 0, 561, 144), (565, 0, 586, 71), ] # boundary_boxes = [get_cluster_boundary(box) for box in boxes] # save_cluster_boundary_image("combine_bound", boxes, boundary_boxes) cluster_candidates = get_cluster_candidates( self.frame_shape, self.min_region_size, boxes ) regions = [ get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes) for candidate in cluster_candidates ] # save_clusters_image("combine", boxes, cluster_candidates, regions) assert len(regions) == 1 def test_dont_combine_boxes(self): boxes = [(460, 0, 532, 129), (586, 0, 606, 46)] # boundary_boxes = [get_cluster_boundary(box) for box in boxes] # save_cluster_boundary_image("dont_combine_bound", boxes, boundary_boxes) cluster_candidates = get_cluster_candidates( self.frame_shape, self.min_region_size, boxes ) regions = [ get_cluster_region(self.frame_shape, self.min_region_size, candidate, boxes) for candidate in cluster_candidates ] # save_clusters_image("dont_combine", boxes, cluster_candidates, regions) assert len(regions) == 2