import logging import os.path from typing import Literal try: from hide_warnings import hide_warnings except: # noqa: E722 def hide_warnings(func): pass from pydantic import Field from frigate.detectors.detection_api import DetectionApi from frigate.detectors.detector_config import BaseDetectorConfig logger = logging.getLogger(__name__) DETECTOR_KEY = "rknn" supported_socs = ["rk3562", "rk3566", "rk3568", "rk3588"] class RknnDetectorConfig(BaseDetectorConfig): type: Literal[DETECTOR_KEY] core_mask: int = Field(default=0, ge=0, le=7, title="Core mask for NPU.") class Rknn(DetectionApi): type_key = DETECTOR_KEY def __init__(self, config: RknnDetectorConfig): # create symlink for Home Assistant add on if not os.path.isfile("/proc/device-tree/compatible"): if os.path.isfile("/device-tree/compatible"): os.symlink("/device-tree/compatible", "/proc/device-tree/compatible") # find out SoC try: with open("/proc/device-tree/compatible") as file: soc = file.read().split(",")[-1].strip("\x00") except FileNotFoundError: logger.error("Make sure to run docker in privileged mode.") raise Exception("Make sure to run docker in privileged mode.") if soc not in supported_socs: logger.error( "Your SoC is not supported. Your SoC is: {}. Currently these SoCs are supported: {}.".format( soc, supported_socs ) ) raise Exception( "Your SoC is not supported. Your SoC is: {}. Currently these SoCs are supported: {}.".format( soc, supported_socs ) ) if not os.path.isfile("/usr/lib/librknnrt.so"): if "rk356" in soc: os.rename("/usr/lib/librknnrt_rk356x.so", "/usr/lib/librknnrt.so") elif "rk3588" in soc: os.rename("/usr/lib/librknnrt_rk3588.so", "/usr/lib/librknnrt.so") self.core_mask = config.core_mask self.height = config.model.height self.width = config.model.width if True: os.makedirs("/config/model_cache/rknn", exist_ok=True) if (config.model.width != 320) or (config.model.height != 320): logger.error( "Make sure to set the model width and heigth to 320 in your config.yml." ) raise Exception( "Make sure to set the model width and heigth to 320 in your config.yml." ) if config.model.input_pixel_format != "bgr": logger.error( 'Make sure to set the model input_pixel_format to "bgr" in your config.yml.' ) raise Exception( 'Make sure to set the model input_pixel_format to "bgr" in your config.yml.' ) if config.model.input_tensor != "nhwc": logger.error( 'Make sure to set the model input_tensor to "nhwc" in your config.yml.' ) raise Exception( 'Make sure to set the model input_tensor to "nhwc" in your config.yml.' ) from rknnlite.api import RKNNLite self.rknn = RKNNLite(verbose=False) if self.rknn.load_rknn(self.model_path) != 0: logger.error("Error initializing rknn model.") if self.rknn.init_runtime(core_mask=self.core_mask) != 0: logger.error( "Error initializing rknn runtime. Do you run docker in privileged mode?" ) raise Exception( "RKNN does not currently support any models. Please see the docs for more info." ) def __del__(self): self.rknn.release() @hide_warnings def inference(self, tensor_input): return self.rknn.inference(inputs=tensor_input) def detect_raw(self, tensor_input): output = self.inference( [ tensor_input, ] ) return self.postprocess(output[0])