import time import datetime import threading import cv2 import itertools import copy import numpy as np import multiprocessing as mp from collections import defaultdict from scipy.spatial import distance as dist from frigate.util import draw_box_with_label, calculate_region class ObjectTracker(): def __init__(self, max_disappeared): self.tracked_objects = {} self.disappeared = {} self.max_disappeared = max_disappeared def register(self, index, obj): id = f"{obj['frame_time']}-{index}" obj['id'] = id obj['top_score'] = obj['score'] self.add_history(obj) self.tracked_objects[id] = obj self.disappeared[id] = 0 def deregister(self, id): del self.tracked_objects[id] del self.disappeared[id] def update(self, id, new_obj): self.disappeared[id] = 0 self.tracked_objects[id].update(new_obj) self.add_history(self.tracked_objects[id]) if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']: self.tracked_objects[id]['top_score'] = self.tracked_objects[id]['score'] def add_history(self, obj): entry = { 'score': obj['score'], 'box': obj['box'], 'region': obj['region'], 'centroid': obj['centroid'], 'frame_time': obj['frame_time'] } if 'history' in obj: obj['history'].append(entry) else: obj['history'] = [entry] def match_and_update(self, frame_time, new_objects): if len(new_objects) == 0: for id in list(self.tracked_objects.keys()): if self.disappeared[id] >= self.max_disappeared: self.deregister(id) else: self.disappeared[id] += 1 return # group by name new_object_groups = defaultdict(lambda: []) for obj in new_objects: new_object_groups[obj[0]].append({ 'label': obj[0], 'score': obj[1], 'box': obj[2], 'area': obj[3], 'region': obj[4], 'frame_time': frame_time }) # track objects for each label type for label, group in new_object_groups.items(): current_objects = [o for o in self.tracked_objects.values() if o['label'] == label] current_ids = [o['id'] for o in current_objects] current_centroids = np.array([o['centroid'] for o in current_objects]) # compute centroids of new objects for obj in group: centroid_x = int((obj['box'][0]+obj['box'][2]) / 2.0) centroid_y = int((obj['box'][1]+obj['box'][3]) / 2.0) obj['centroid'] = (centroid_x, centroid_y) if len(current_objects) == 0: for index, obj in enumerate(group): self.register(index, obj) return new_centroids = np.array([o['centroid'] for o in group]) # compute the distance between each pair of tracked # centroids and new centroids, respectively -- our # goal will be to match each new centroid to an existing # object centroid D = dist.cdist(current_centroids, new_centroids) # in order to perform this matching we must (1) find the # smallest value in each row and then (2) sort the row # indexes based on their minimum values so that the row # with the smallest value is at the *front* of the index # list rows = D.min(axis=1).argsort() # next, we perform a similar process on the columns by # finding the smallest value in each column and then # sorting using the previously computed row index list cols = D.argmin(axis=1)[rows] # in order to determine if we need to update, register, # or deregister an object we need to keep track of which # of the rows and column indexes we have already examined usedRows = set() usedCols = set() # loop over the combination of the (row, column) index # tuples for (row, col) in zip(rows, cols): # if we have already examined either the row or # column value before, ignore it if row in usedRows or col in usedCols: continue # otherwise, grab the object ID for the current row, # set its new centroid, and reset the disappeared # counter objectID = current_ids[row] self.update(objectID, group[col]) # indicate that we have examined each of the row and # column indexes, respectively usedRows.add(row) usedCols.add(col) # compute the column index we have NOT yet examined unusedRows = set(range(0, D.shape[0])).difference(usedRows) unusedCols = set(range(0, D.shape[1])).difference(usedCols) # in the event that the number of object centroids is # equal or greater than the number of input centroids # we need to check and see if some of these objects have # potentially disappeared if D.shape[0] >= D.shape[1]: for row in unusedRows: id = current_ids[row] if self.disappeared[id] >= self.max_disappeared: self.deregister(id) else: self.disappeared[id] += 1 # if the number of input centroids is greater # than the number of existing object centroids we need to # register each new input centroid as a trackable object else: for col in unusedCols: self.register(col, group[col])