web_port: 5000 mqtt: host: mqtt.server.com topic_prefix: frigate # client_id: frigate # Optional -- set to override default client id of 'frigate' if running multiple instances # user: username # Optional -- Uncomment for use # password: password # Optional -- Uncomment for use ################# # Default ffmpeg args. Optional and can be overwritten per camera. # Should work with most RTSP cameras that send h264 video # Built from the properties below with: # "ffmpeg" + global_args + input_args + "-i" + input + output_args ################# # ffmpeg: # global_args: # - -hide_banner # - -loglevel # - panic # hwaccel_args: [] # input_args: # - -avoid_negative_ts # - make_zero # - -fflags # - nobuffer # - -flags # - low_delay # - -strict # - experimental # - -fflags # - +genpts+discardcorrupt # - -vsync # - drop # - -rtsp_transport # - tcp # - -stimeout # - '5000000' # - -use_wallclock_as_timestamps # - '1' # output_args: # - -vf # - mpdecimate # - -f # - rawvideo # - -pix_fmt # - rgb24 #################### # Global object configuration. Applies to all cameras and regions # unless overridden at the camera/region levels. # Keys must be valid labels. By default, the model uses coco (https://dl.google.com/coral/canned_models/coco_labels.txt). # All labels from the model are reported over MQTT. These values are used to filter out false positives. #################### objects: person: min_area: 5000 max_area: 100000 threshold: 0.5 cameras: back: ffmpeg: ################ # Source passed to ffmpeg after the -i parameter. Supports anything compatible with OpenCV and FFmpeg. # Environment variables that begin with 'FRIGATE_' may be referenced in {} ################ input: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2 ################# # These values will override default values for just this camera ################# # global_args: [] # hwaccel_args: [] # input_args: [] # output_args: [] ################ ## Optional mask. Must be the same dimensions as your video feed. ## The mask works by looking at the bottom center of the bounding box for the detected ## person in the image. If that pixel in the mask is a black pixel, it ignores it as a ## false positive. In my mask, the grass and driveway visible from my backdoor camera ## are white. The garage doors, sky, and trees (anywhere it would be impossible for a ## person to stand) are black. ################ # mask: back-mask.bmp ################ # Allows you to limit the framerate within frigate for cameras that do not support # custom framerates. A value of 1 tells frigate to look at every frame, 2 every 2nd frame, # 3 every 3rd frame, etc. ################ take_frame: 1 objects: person: min_area: 5000 max_area: 100000 threshold: 0.5 ################ # size: size of the region in pixels # x_offset/y_offset: position of the upper left corner of your region (top left of image is 0,0) # min_person_area (optional): minimum width*height of the bounding box for the detected person # max_person_area (optional): maximum width*height of the bounding box for the detected person # threshold (optional): The minimum decimal percentage (50% hit = 0.5) for the confidence from tensorflow # Tips: All regions are resized to 300x300 before detection because the model is trained on that size. # Resizing regions takes CPU power. Ideally, all regions should be as close to 300x300 as possible. # Defining a region that goes outside the bounds of the image will result in errors. ################ regions: - size: 350 x_offset: 0 y_offset: 300 objects: car: threshold: 0.2 - size: 400 x_offset: 350 y_offset: 250 objects: person: min_area: 2000 - size: 400 x_offset: 750 y_offset: 250 objects: person: min_area: 2000